www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktion bilden
Stammfunktion bilden < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 Mi 01.02.2012
Autor: Steffi2012

Aufgabe
$f(x) = [mm] \bruch{x^2}{x^3+1}$ [/mm]

Hallo Leute,
ich muss die Stammfunktion von $f(x) = [mm] \bruch{x^2}{x^3+1}$ [/mm] bilden. Man müsste die eigentlich mit der partiellen Integration oder durch Integration durch Substitution lösen können. Subsitution fällt aber weg, da die [mm] $x^2$ [/mm] nicht die Ableitung von [mm] $x^3+1$ [/mm] ist.
Bleibt nur die partielle Integration, oder? Was würdet ihr für v(x) und u(x) wählen? Habe Probleme bei [mm] $({x^3+1})^{-1}$... [/mm] Man müsste ja entweder die Ableitung oder die Stammfunktion bilden (je nachdem, ob [mm] $({x^3+1})^{-1}$ [/mm] u(x) oder v(x) ist).

Vielen Dank für eure Hilfe.

Steffi

        
Bezug
Stammfunktion bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Mi 01.02.2012
Autor: glie


> [mm]f(x) = \bruch{x^2}{x^3+1}[/mm]
>  Hallo Leute,
>  ich muss die Stammfunktion von [mm]f(x) = \bruch{x^2}{x^3+1}[/mm]
> bilden. Man müsste die eigentlich mit der partiellen
> Integration oder durch Integration durch Substitution
> lösen können. Subsitution fällt aber weg, da die [mm]x^2[/mm]
> nicht die Ableitung von [mm]x^3+1[/mm] ist.
>  Bleibt nur die partielle Integration, oder? Was würdet
> ihr für v(x) und u(x) wählen? Habe Probleme bei
> [mm]({x^3+1})^{-1}[/mm]... Man müsste ja entweder die Ableitung
> oder die Stammfunktion bilden (je nachdem, ob
> [mm]({x^3+1})^{-1}[/mm] u(x) oder v(x) ist).
>  
> Vielen Dank für eure Hilfe.
>  
> Steffi


Hallo Steffi,

ist dir folgende Integralregel bekannt:

[mm] $\integral{\bruch{f'(x)}{f(x)}dx}=ln|f(x)|+c$ [/mm]


Wenn ja, dann versuch's doch mal wie folgt:

[mm] $\integral {\bruch{x^2}{x^3+1}dx}=\red{\bruch{1}{3}}*\integral{\bruch{\red{3}*x^2}{x^3+1}dx}=...$ [/mm]

Gruß Glie

Bezug
                
Bezug
Stammfunktion bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 Mi 01.02.2012
Autor: Steffi2012

Wie heißt diese Integralregel? Ich meine, dass ich die Integralregel nicht kenne.
Die Lösung wäre doch:
$F(x) = [mm] \bruch{1}{3}*ln(x^3+1)$ [/mm]

richtig?

Bezug
                        
Bezug
Stammfunktion bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Mi 01.02.2012
Autor: glie


> Wie heißt diese Integralregel? Ich meine, dass ich die
> Integralregel nicht kenne.
> Die Lösung wäre doch:
>  [mm]F(x) = \bruch{1}{3}*ln(x^3+1)[/mm]
>  
> richtig?

Ja fast, nimm da zur Sicherheit den Absolutbetrag, sonst könntest du mit deiner Definitionsmenge in Konflikt geraten, also

$F(x) = [mm] \bruch{1}{3}*ln|x^3+1|+c$ [/mm]

Sonst passt das.

Diese Integralregel kannst du dir doch ganz leicht klarmachen, betrachte dazu die Funktion

[mm] $g(x)=\ln(f(x))$ [/mm]

und bilde davon die Ableitung. Denke dabei an die Kettenregel. Was erhältst du?

Gruß Glie

Bezug
                        
Bezug
Stammfunktion bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 07:01 Do 02.02.2012
Autor: fred97


> Wie heißt diese Integralregel?

Das ist eine gute Frage ! Ja, wie soll man sowas nennen ? Ich tendiere zu "Substitutionsregel" (mit der Substitution u=f(x)).

Jetzt wirst Du sagen: "Substitutionsregel" steht doch für etwas anderes !


Na ja, es so wie mit dem Begriff "Schwarzbrot". Das heißt nur so, obwohl es gar kein Brot ist. Alles klar ?

FRED





> Ich meine, dass ich die
> Integralregel nicht kenne.
> Die Lösung wäre doch:
>  [mm]F(x) = \bruch{1}{3}*ln(x^3+1)[/mm]
>  
> richtig?


Bezug
                                
Bezug
Stammfunktion bilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:50 Do 02.02.2012
Autor: Marcel

Hallo Fred,

> > Wie heißt diese Integralregel?
>
> Das ist eine gute Frage ! Ja, wie soll man sowas nennen ?
> Ich tendiere zu "Substitutionsregel" (mit der Substitution
> u=f(x)).
>  
> Jetzt wirst Du sagen: "Substitutionsregel" steht doch für
> etwas anderes !
>  
>
> Na ja, es so mit dem Begriff "Schwarzbrot". Das heißt nur
> so, obwohl es gar kein Brot ist. Alles klar ?

oder "Bierknacker", oder "Bierwurst". Okay, ist nicht ganz das gleiche, gebe ich zu, aber das wurde ohne Bier hergestellt... Obwohl, wer weiß, was die bei der Herstellung trinken ^^

Gruß,
Marcel



Bezug
                                        
Bezug
Stammfunktion bilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:10 Do 02.02.2012
Autor: fred97


> Hallo Fred,
>  
> > > Wie heißt diese Integralregel?
> >
> > Das ist eine gute Frage ! Ja, wie soll man sowas nennen ?
> > Ich tendiere zu "Substitutionsregel" (mit der Substitution
> > u=f(x)).
>  >  
> > Jetzt wirst Du sagen: "Substitutionsregel" steht doch für
> > etwas anderes !
>  >  
> >
> > Na ja, es so mit dem Begriff "Schwarzbrot". Das heißt nur
> > so, obwohl es gar kein Brot ist. Alles klar ?
>  
> oder "Bierknacker", oder "Bierwurst". Okay, ist nicht ganz
> das gleiche, gebe ich zu, aber das wurde ohne Bier
> hergestellt... Obwohl, wer weiß, was die bei der
> Herstellung trinken ^^

Hallo Marcel,

Dein Vergleich hinkt, aber immerhin hinkt er in die richtige Richtung !

Neulich habe ich Bierwurst gegessen. Die hat so besch... geschmeckt, dass man glauben konnte, der oder die Hersteller waren sternhagelvoll.

Gruß FRED

>  
> Gruß,
>  Marcel
>  
>  


Bezug
                                                
Bezug
Stammfunktion bilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:23 Do 02.02.2012
Autor: Marcel

Hi Fred,

> > Hallo Fred,
>  >  
> > > > Wie heißt diese Integralregel?
> > >
> > > Das ist eine gute Frage ! Ja, wie soll man sowas nennen ?
> > > Ich tendiere zu "Substitutionsregel" (mit der Substitution
> > > u=f(x)).
>  >  >  
> > > Jetzt wirst Du sagen: "Substitutionsregel" steht doch für
> > > etwas anderes !
>  >  >  
> > >
> > > Na ja, es so mit dem Begriff "Schwarzbrot". Das heißt nur
> > > so, obwohl es gar kein Brot ist. Alles klar ?
>  >  
> > oder "Bierknacker", oder "Bierwurst". Okay, ist nicht ganz
> > das gleiche, gebe ich zu, aber das wurde ohne Bier
> > hergestellt... Obwohl, wer weiß, was die bei der
> > Herstellung trinken ^^
>  
> Hallo Marcel,
>  
> Dein Vergleich hinkt, aber immerhin hinkt er in die
> richtige Richtung !

bei Bierwurst hinkt er, das stimmt. Deswegen habe ich das ja auch kommentiert. Aber bei "Bierknacker": Das ist weder Bier noch ein "Knacker" ^^
Wobei sicher nicht alle dieses Wort so kennen. Wie sagt man hier in Baden-Württemberg? Ich glaube Schinkenbeißer heißen die hier. Neulich hat man mich in der Bäckerei auch komisch angeguckt, als ich den "Granatsplitter" bestellt habe - habe das aber während der Bestellung gesagt, unter welchem Namen ich diese Teile kenne. Sie sind auch nicht ganz das gleiche, aber die "Bergsteiger" hier sind den Granatsplittern ähnlich!

> Neulich habe ich Bierwurst gegessen. Die hat so besch...
> geschmeckt, dass man glauben konnte, der oder die
> Hersteller waren sternhagelvoll.

Da hatte der Name wenigstens seine Berechtigung :-)

Gruß,
Marcel

Bezug
                                                        
Bezug
Stammfunktion bilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:14 Fr 03.02.2012
Autor: fred97


> Hi Fred,
>  
> > > Hallo Fred,
>  >  >  
> > > > > Wie heißt diese Integralregel?
> > > >
> > > > Das ist eine gute Frage ! Ja, wie soll man sowas nennen ?
> > > > Ich tendiere zu "Substitutionsregel" (mit der Substitution
> > > > u=f(x)).
>  >  >  >  
> > > > Jetzt wirst Du sagen: "Substitutionsregel" steht doch für
> > > > etwas anderes !
>  >  >  >  
> > > >
> > > > Na ja, es so mit dem Begriff "Schwarzbrot". Das heißt nur
> > > > so, obwohl es gar kein Brot ist. Alles klar ?
>  >  >  
> > > oder "Bierknacker", oder "Bierwurst". Okay, ist nicht ganz
> > > das gleiche, gebe ich zu, aber das wurde ohne Bier
> > > hergestellt... Obwohl, wer weiß, was die bei der
> > > Herstellung trinken ^^
>  >  
> > Hallo Marcel,
>  >  
> > Dein Vergleich hinkt, aber immerhin hinkt er in die
> > richtige Richtung !
>  
> bei Bierwurst hinkt er, das stimmt. Deswegen habe ich das
> ja auch kommentiert. Aber bei "Bierknacker": Das ist weder
> Bier noch ein "Knacker" ^^
> Wobei sicher nicht alle dieses Wort so kennen. Wie sagt man
> hier in Baden-Württemberg?


Du bist also , wie ich, auch in diesem tollen Bundesland zuhause ! Wo denn, wenn ich fragen darf ?


> Ich glaube Schinkenbeißer
> heißen die hier. Neulich hat man mich in der Bäckerei
> auch komisch angeguckt, als ich den "Granatsplitter"
> bestellt habe - habe das aber während der Bestellung
> gesagt, unter welchem Namen ich diese Teile kenne. Sie sind
> auch nicht ganz das gleiche, aber die "Bergsteiger" hier
> sind den Granatsplittern ähnlich!

In unserem "Dorf" gibt es einen Metzger, der "Fernsehwürste" verkauft !

Gruß FRED

>  
> > Neulich habe ich Bierwurst gegessen. Die hat so besch...
> > geschmeckt, dass man glauben konnte, der oder die
> > Hersteller waren sternhagelvoll.
>  
> Da hatte der Name wenigstens seine Berechtigung :-)
>  
> Gruß,
>  Marcel


Bezug
                        
Bezug
Stammfunktion bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 07:59 Do 02.02.2012
Autor: Marcel

Hallo,

> Wie heißt diese Integralregel? Ich meine, dass ich die
> Integralregel nicht kenne.

ich tendiere zu "Ergebnis einer Anwendung der Substitutionsregel". Warum?

Naja, wie Fred schon sagte:
Mit $u=f(x)$ ist $du=f'(x)dx$ und daher
[mm] $$\int \frac{f'(x)}{f(x)}dx=\int \frac{1}{f(x)}\;f'(x)dx=\int \frac{1}{u}du=\ln(u)=(\ln \circ f)(x)\,.$$ [/mm]

Es ist also weniger die Substitutionsregel, sondern ein Ergebnis einer Anwendung eben dieser - meiner Ansicht nach!

Gruß,
Marcel

Bezug
        
Bezug
Stammfunktion bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Mi 01.02.2012
Autor: TheBozz-mismo

Hallo
Substituiere doch einfach [mm] x^3+1. [/mm] Warum sollte das nicht klappen?
[mm] w=x^3+1 [/mm]
[mm] dw=3x^2*dx [/mm]
Nach dx umstellen, einsetzen und dann hebt sich das [mm] x^2 [/mm] weg.
Und bei partieller Integration kann ich dir einen guten Tipp geben: Probier es aus und schau nach, ob sich am Ende dein Integral vereinfacht hat oder ob du es verkomplziert hast. Manchmal(häufig bei trigonmetrischen Funktionen) musst du die partielle Integration auch mehrmals anwenden.

Gruß
TheBozz-mismo

Bezug
                
Bezug
Stammfunktion bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:28 Mi 01.02.2012
Autor: Steffi2012

Danke, also so hatten wir das noch nicht gemacht.
Für $dx = [mm] \bruch{dw}{3x^2}$... [/mm] Muss man das dann hier einsetzen?

$f(x) = [mm] \bruch{x^2}{x^3+1} [/mm] dx$

Wenn ja, dann wäre das:
[mm] $\bruch{dw}{3x^3+3}$ [/mm]

nur, wie geht's jetzt weiter?

Bezug
                        
Bezug
Stammfunktion bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Mi 01.02.2012
Autor: TheBozz-mismo

Hallo nochmal
> Danke, also so hatten wir das noch nicht gemacht.
>  Für [mm]dx = \bruch{dw}{3x^2}[/mm]... Muss man das dann hier
> einsetzen?
>  
> [mm]f(x) = \bruch{x^2}{x^3+1} dx[/mm]
>
> Wenn ja, dann wäre das:
>  [mm]\bruch{dw}{3x^3+3}[/mm]
>  

Nein ganz.
Also du substituierst [mm] w=x^3+1 [/mm] und wir haben für die Integrationsvariabel folgende Gleichung: [mm] dx=\bruch{dw}{3x^2} [/mm]

Jetzt setzt man beides in das Integral ein
[mm] =>\integral_{}^{}\bruch{x^2}{w}*\bruch{dw}{3x^2}=\bruch{1}{3}*\integral_{}^{}\bruch{1}{w}dw [/mm] und dieses Integral kannst du einfach lösen(Wenn du es dir einfacher machen willst, dann schreib [mm] \bruch{1}{w}=w^{-1}) [/mm] Und am Ende nicht die Rücksubstitution vergessen

> nur, wie geht's jetzt weiter?

Gruß
TheBozz-mismo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de