www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Stammfunktion bilden e^(1-0.2x
Stammfunktion bilden e^(1-0.2x < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion bilden e^(1-0.2x: Frage
Status: (Frage) beantwortet Status 
Datum: 20:34 Di 31.05.2005
Autor: frodoSN

Hallo!

ich bearbeite gerade das Mathe Abi LK 2005 von MeckPomm.

ich komme an einer stelle nicht weiter: man muss die Stammfunktion von

f(X) = x*e^(1-0.2x)

bilden.

es geht denke ich über partielle integration aber irgendwie krieg ichs nicht hin.

wäre super wenn mal jemand erklären köntte wie das geht.

danke!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stammfunktion bilden e^(1-0.2x: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Di 31.05.2005
Autor: Physikus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

hi, dann werde ich mich mal erbarmen(*g*) und die ganze mal kurz vorrechen.
ok als erste die MBpartielle integration:
ausgang ist die ableitung f*g
$(f*g)'=f'*g+f*g'$
$\gdw f'*g=(f*g)'-f*g'$
das ganze wird jetzt integriert
$\gdw \integral{f'*g dx}=\integral{(f*g)' dx}-\integral{f*g' dx}$
wobei $ \integral{(f*g)' dx}$  zu $ f*g$ wird
also haben wir als formel für die partielle integration
$\gdw \integral{f'*g dx}=(f*g)-\integral{f*g' dx}$

nun also zu deiner funktion $h=x*e^{1-0.2x}$
jetzt muss man noch $f'$ (achtung man wählt nimmt hier an dass die $h=f'*g$ ist) und $g$ geschickt wählen. wie wir $f'$ wählen ist egal. da wir sowohl $x$ als auch $e^{1-0.2x}$ leicht zu integrieren ist. bei g ist es nicht egal da wir das integral $\integral{f*g' dx}$ ja noch bilden müssen und wenn wir $g=e^{1-0.2x}$ wählen steht da dann immer noch ein integral das nicht schöner aussieht als das vorherige. also wählen wir $f'=e^{1-0.2x}$ und $g=x$.
so folgt dann:
$f=-5*e^{1-0.2x}$
$g'=1$
also für
$\integral{x*e^{1-0.2x} dx}=-5x*e^{1-0.2x}-\integral{e^{1-0.2x dx}+c1}$
$\gdw \integral{x*e^{1-0.2x} dx}=-5x*e^{1-0.2x}-5*{e^{1-0.2x}+c2}$
(die c's sind integrationskonstanten)
$\gdw \integral{x*e^{1-0.2x} dx}=-5*(e^{1-0.2x}*(x+1)+c2}$




Bezug
        
Bezug
Stammfunktion bilden e^(1-0.2x: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Di 31.05.2005
Autor: Karl_Pech

Hallo frodo,


> ich komme an einer stelle nicht weiter: man muss die
> Stammfunktion von
>
> [mm] $f\left( x \right) [/mm] = [mm] x*e^{1-0.2x}$ [/mm]
>  
> bilden.
>  
> es geht denke ich über partielle integration aber irgendwie
> krieg ichs nicht hin.


Bilde [mm] $f'(x)\!$: [/mm]


[m]\left[ {xe^{1 - 0.2x} } \right]'\mathop = \limits^{\begin{subarray}{l} {\text{Produktregel}}{\text{, danach}} \\ {\text{Kettenregel}} \end{subarray}} e^{1 - 0.2x} + x\underbrace {\left( { - 0.2} \right)e^{1 - 0.2x} }_{{\text{nach der Kettenregel}}} = e^{1 - 0.2x} - 0.2*xe^{1 - 0.2x}[/m]


Jetzt gilt nach dem Hauptsatz der Integralrechnung:


[m]\int {\left( {e^{1 - 0.2x} - 0.2*xe^{1 - 0.2x} } \right)} dx = xe^{1 - 0.2x}[/m]


Umformen ergibt:


[m]\begin{gathered} \int {\left( {e^{1 - 0.2x} - 0.2*xe^{1 - 0.2x} } \right)} dx = \int {e^{1 - 0.2x} } dx - 0.2\int {xe^{1 - 0.2x} } dx = xe^{1 - 0.2x} \hfill \\ \Leftrightarrow \int {xe^{1 - 0.2x} } dx = \frac{{xe^{1 - 0.2x} - \int {e^{1 - 0.2x} } dx}} {{ - 0.2}} \hfill \\ \end{gathered}[/m]


Jetzt haben wir unser Problem auf die Berechnung von [m]\textstyle\int{e^{1 - 0.2x}\operatorname{d}\!x}[/m] reduziert. Leite nun zuerst ab:


[m]\left[ {e^{1 - 0.2x} } \right]'\mathop = \limits^{{\text{Kettenregel}}} - 0.2e^{1 - 0.2x}[/m]


und integriere dann:


[m]\begin{gathered} \int {\left( { - 0.2e^{1 - 0.2x} } \right)} dx = e^{1 - 0.2x} \Leftrightarrow \int {e^{1 - 0.2x} } dx = - 5e^{1 - 0.2x} \Rightarrow \int {xe^{1 - 0.2x} } dx = \frac{{xe^{1 - 0.2x} + 5e^{1 - 0.2x} }} {{ - 0.2}} \hfill \\ = - 5\left( {x + 5} \right)e^{1 - 0.2x} \hfill \\ \end{gathered}[/m]


Hier wurde ausgenutzt, daß [m]\left[ e^x \right]' = e^x[/m] gilt.



Viele Grüße
Karl



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de