www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktion e-Funktion bilde
Stammfunktion e-Funktion bilde < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion e-Funktion bilde: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 Di 08.05.2012
Autor: pc_doctor

Aufgabe
f(x) = [mm] e^{-\bruch{1}{8}x^{2}}. [/mm]

Bilden Sie das unbestimmte Integral(Stammfunktion)


Hallo,

ich habe Schwierigkeiten bei dieser Aufgabe.

Das ist zwar nicht explizit die Aufgabenstellung , denn auf dem Blatt steht nix von Stammfunktion , ich möchte diese Funktion aber trotzdem integrieren , da ich morgen eine Mathe-LK-Klausur schreibe , wäre als Übung nicht schlecht.

Natürlich hatte ich den Lehrer da gefragt , wie man denn hier vorgeht , er hatte gesagt , dass wir das jetzt nicht lösen können.

Das ist schon jetzt die zweite Funktion , die ich nicht integrieren kann ,weil es anscheinend nicht lösbar ist , oder ich dazu keine Technik draufhabe.

Ist irgendwie enttäuschend , da nicht näher auf sowas eingegangen wird.

Ich habe hier die Substitution versucht , ging leider nicht , da ich einmal z und einmal x im Integral später habe , das geht ja nicht.

Und die partielle Integration mit der Faktor 1 Regel geht auch nicht , da kein Weg daran vorbei führt , die e-Funktion zu integrieren.

Nach welcher Methode bzw. Technik kann man hier integrieren , das interessiert mich brennend , da ich nicht glaube , dass die Funktion hier unlösbar ist.


        
Bezug
Stammfunktion e-Funktion bilde: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Di 08.05.2012
Autor: MathePower

Hallo pc_doctor,

> f(x) = [mm]e^{-\bruch{1}{8}x^{2}}.[/mm]
>  
> Bilden Sie das unbestimmte Integral(Stammfunktion)
>  
> Hallo,
>  
> ich habe Schwierigkeiten bei dieser Aufgabe.
>  
> Das ist zwar nicht explizit die Aufgabenstellung , denn auf
> dem Blatt steht nix von Stammfunktion , ich möchte diese
> Funktion aber trotzdem integrieren , da ich morgen eine
> Mathe-LK-Klausur schreibe , wäre als Übung nicht
> schlecht.
>  
> Natürlich hatte ich den Lehrer da gefragt , wie man denn
> hier vorgeht , er hatte gesagt , dass wir das jetzt nicht
> lösen können.
>  
> Das ist schon jetzt die zweite Funktion , die ich nicht
> integrieren kann ,weil es anscheinend nicht lösbar ist ,
> oder ich dazu keine Technik draufhabe.
>  
> Ist irgendwie enttäuschend , da nicht näher auf sowas
> eingegangen wird.
>  
> Ich habe hier die Substitution versucht , ging leider nicht
> , da ich einmal z und einmal x im Integral später habe ,
> das geht ja nicht.
>  
> Und die partielle Integration mit der Faktor 1 Regel geht
> auch nicht , da kein Weg daran vorbei führt , die
> e-Funktion zu integrieren.
>  
> Nach welcher Methode bzw. Technik kann man hier integrieren
> , das interessiert mich brennend , da ich nicht glaube ,
> dass die Funktion hier unlösbar ist.


Eine geschlossene Form der Stammfunktion für die Funktion

[mm]f(x) = e^{-\bruch{1}{8}x^{2}}.[/mm]

anzugeben, ist nicht möglich.


Gruss
MathePower  

Bezug
                
Bezug
Stammfunktion e-Funktion bilde: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Di 08.05.2012
Autor: pc_doctor

Das kann doch nicht sein , dass man bei einer e-Funktion ab [mm] x^{2} [/mm] garnix mehr machen kann ?

Das heißt , ich kann eigentlich nur e-Funktionen ersten Grades [mm] (x^{1}) [/mm] integrieren.



Das kann ich mir schwer vorstellen irgendwie :(

Bezug
                        
Bezug
Stammfunktion e-Funktion bilde: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Di 08.05.2012
Autor: notinX

Hallo,

> Das kann doch nicht sein , dass man bei einer e-Funktion ab
> [mm]x^{2}[/mm] garnix mehr machen kann ?
>  
> Das heißt , ich kann eigentlich nur e-Funktionen ersten
> Grades [mm](x^{1})[/mm] integrieren.
>  

ganz genau.

>
>
> Das kann ich mir schwer vorstellen irgendwie :(

Tja, so mancher hat sich darüber schon den Kopf zerbrochen. Aber es ist tatsächlich nicht möglich.

Gruß,

notinX

Bezug
                                
Bezug
Stammfunktion e-Funktion bilde: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:29 Di 08.05.2012
Autor: pc_doctor

Alles klar danke , dann muss ich mich wohl damit zufrieden geben xd.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de