www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Stammfunktion einer E-Funktion
Stammfunktion einer E-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion einer E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 Mo 05.03.2007
Autor: vollmond88

Hallo!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich bin gerade dabei fürs Mathe-Abi zu lernen und rechne grade ein paar Aufgaben unter anderem:
es soll bewiesen werden, dass F(X)= [mm] -(x^2+6x+10)*e^1-x [/mm] eine Stammfunktion von f4(x) (--> geht um ne Kurvenschar) ist. f4(x)= [mm] (x^2+4x+4)*e^1-x. [/mm]
Um rauszubekommen ob F(x) ne Stammfunktion von f4(x) ist kann man doch einfach F(x) abeiten und wenn dann f4(x) rauskommt ist es ne Stammfunktion oder?!
Ich hab F(X) abgeleitet und [mm] -(x^2+7x+13)e^1-x [/mm] rausbekommen, was ja gar nicht der Funktion entspricht.
Kann mir vielleicht jemand helfen und mir erklären wies richtig ist und wie man das auch  macht?! bin echt verzweifelt gerade....

LG lisa

        
Bezug
Stammfunktion einer E-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 Mo 05.03.2007
Autor: schachuzipus

Hallo Lisa,

bist du sicher, dass du die Aufgabe richtig aufgeschrieben hast?

Ich meine, wenn du eine Funktion hast, die ein Polynom 2.ten Grades ist, so muss doch eine Stammfunktion dazu 3ten Grades sein, oder nicht?

Check das bitte nochmal

Gruß

schachuzipus

Bezug
        
Bezug
Stammfunktion einer E-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:08 Mo 05.03.2007
Autor: Bastiane

Hallo vollmond88!

> Hallo!
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Ich bin gerade dabei fürs Mathe-Abi zu lernen und rechne
> grade ein paar Aufgaben unter anderem:
> es soll bewiesen werden, dass F(X)= [mm]-(x^2+6x+10)*e^1-x[/mm] eine
> Stammfunktion von f4(x) (--> geht um ne Kurvenschar) ist.
> f4(x)= [mm](x^2+4x+4)*e^1-x.[/mm]
>  Um rauszubekommen ob F(x) ne Stammfunktion von f4(x) ist
> kann man doch einfach F(x) abeiten und wenn dann f4(x)
> rauskommt ist es ne Stammfunktion oder?!
>  Ich hab F(X) abgeleitet und [mm]-(x^2+7x+13)e^1-x[/mm]
> rausbekommen, was ja gar nicht der Funktion entspricht.
>  Kann mir vielleicht jemand helfen und mir erklären wies
> richtig ist und wie man das auch  macht?! bin echt
> verzweifelt gerade....

Wenn das wirklich [mm] e^1-x [/mm] und nicht [mm] e^{1-x} [/mm] bedeuten soll, kannst du doch auch recht einfach eine Stammfunktion direkt berechnen...

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Stammfunktion einer E-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Mo 05.03.2007
Autor: schachuzipus

Hallo nochmal,

jetzt nach Bastianes Bemerkung wird es auch mir klarer ;-)

Ich glaube, du hast dich einfach beim Ableiten vertan:

[mm] \left(-(x^2+6x+10)e^{1-x}\right)'=-(2x+6)e^{1-x}+(-(x^2+6x+10))e^{1-x}\cdot{}(-1) [/mm]
[mm] =(-2x-6)e^{1-x}+(x^2+6x+10)e^{1-x}=(x^2+4x+4)e^{1-x} [/mm]

nach Produkt- und Kettenregel


Gruß


schachuzipus

Bezug
        
Bezug
Stammfunktion einer E-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:27 Mo 05.03.2007
Autor: ullim

Hi,

also die Funktion lautet wahrscheinlich

[mm] -(x^2+6x+10)\cdot{}e^{1-x} [/mm] so wie von Basiane vermutet. Dann nur ableiten und schon ist alles bewiesen.

mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de