www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktion finden
Stammfunktion finden < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion finden: Erklärung
Status: (Frage) beantwortet Status 
Datum: 17:18 Do 15.04.2010
Autor: BlablaBison

Aufgabe
f(x)= [mm] \bruch{6x}{3x^{2}+2} [/mm]

Hallo zusammen! Vorneweg: Ich kenne die Regel, dass 1/x "aufgeleitet" ln |x| ergibt und ich kenne auch die Lösung dieser Funktion: ln [mm] |3x^{2}+2|, [/mm] die mir durch ableiten sogar einleuchtet. Gut, aber wie kann ich mir die Vorgehensweise allg. erklären? Warum wird das 6x im Zähler einfach außen vor gelassen, obwohl doch ein x dabei ist?!

Ich hab' schon versucht die Ausgangsfkt. aufzuteilen in:
f(x)= 6x* [mm] \bruch{1}{3x^{2}+2} [/mm]
Dann müsste ich die Produktregel anwenden...
F(x)= [mm] 3x_{2} [/mm] * [mm] \bruch{1}{3x^{2}+2} [/mm] + 6x * ...tja und dann?...etwa...
ln [mm] |3x^{2}+2| [/mm] geteilt durch die inner Ableitung?

Wäre euch für Hilfestellung SEHR dankbar! Morgen ist mein Mathe-Abi....

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stammfunktion finden: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Do 15.04.2010
Autor: MontBlanc

Hallo,

der Trick ist hier zu sehen, dass du ein Intgral der Form :

[mm] \integral{\bruch{g'(x)}{g(x)}dx} [/mm] hast. Die Lösung ist allgemein log(g(x))+C .
wobei log(...) der natürliche Logarithmus (zur basis e ist)
Warum ?

Nimm dir dein Integral:

[mm] \integral{\bruch{6x}{3x^2+2}dx} [/mm]

substituiere [mm] u=3x^2+2 [/mm]

dann ist [mm] \bruch{du}{dx}=6x \Rightarrow dx=\bruch{1}{6x}. [/mm] Das Integral wird also zu:

[mm] \integral{\bruch{6x}{u}*\bruch{1}{6x}du}=\integral{\bruch{1}{u}du}=log(u)+C [/mm]

Rücksubstitution, und fertig.

Lg

Bezug
                
Bezug
Stammfunktion finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 Do 15.04.2010
Autor: BlablaBison

boah, deine Erklärung hat's in sich! Muss ich zum Glück gar nicht ganz verstehen, da dein Tipp völlig reicht. Das ist für mich 'ne Vokabel, die ich nur noch morgen ein letztes Mal drauf haben muss. Wir haben das im Unterricht als einzige Ausnahme der derartigen sonst für uns unmöglichen gebrochenrationalen Fkt. bei der Suche nach Stammfunktionen gelernt. Das hatte ich leider vergessen, ist aber auch schon eine ganze Weile her. Vielen Dank auf jeden Fall, ich hab' mir darüber den Kopf zerbrochen, wie das bei anderen (wie z.B. 9x+2 im Zähler) funktionieren soll!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de