www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Stammfunktion von E-Funktionen
Stammfunktion von E-Funktionen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion von E-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 So 20.08.2006
Autor: Marion_

Aufgabe
Geben Sie eine Stammfunktion von f an:

f(t)= [mm] 3*e^{(-3/2)t+3/7} [/mm]  

Hallo,
leider hab ich keine Ahnung, wie man Stammfunktionen bei E-Funktionen bestimmt.

Tipps wären gut :).
Danke.

        
Bezug
Stammfunktion von E-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 So 20.08.2006
Autor: laryllan

Hallo Marion,

vielleicht hilft dir ja das Folgende weiter: [tex] \integral{e^{ax+b} dx}= \bruch{1}{a}*e^{ax+b} +c [/tex]

Wobei das 'c' hier eine beliebige Konstante ist. In der Aufgabe steht deswegen auch "EINE" Stammfunktion.

Namárie,
sagt ein Lary, wo hofft, dass dir das helfen tut

Bezug
                
Bezug
Stammfunktion von E-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 So 20.08.2006
Autor: Marion_

Hallo Lary,
kann das die Lösung sein?

F(t)= 3/(-3/2)t [mm] *e^{(-3/2)t+3/7} [/mm]

Danke für die Hilfe.
Marion.

Bezug
                        
Bezug
Stammfunktion von E-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 So 20.08.2006
Autor: ardik

Hallo Marion,

das t vor dem e ist zuviel. Davon abgesehen ok.

Da Ableiten ja meist einfacher ist als Stammfunktion Bilden, kann man oft recht gut das Ergebnis selbst überprüfen, indem man die Stammfunktion ableitet. Dann müsste wieder die Ausgangsfunktion rauskommen.


Allgemein zum "Aufleiten" von e-Funktionen:
Schau Dir erst mal das Ableiten an:

$f(x) = [mm] e^{ax+b}$ [/mm]
$f'(x) = [mm] a*e^{ax+b}$ [/mm] wegen Kettenregel

Wenn man nun aber zu $f(x) = [mm] e^{ax+b}$ [/mm] die Stammfunktion bilden soll, kann man sich ja überlegen, wovon $f(x)$ selbst die Ableitung ist. Klar ist: Der Exponent bleibt unverändert. Durch die Kettenregel würde aber der Faktor vor dem x (bzw. t in Deiner Aufgabe) als Faktor vor das e rutschen. Die Stammfunktion muss also so aussehen, dass gerade dieser Faktor beim Ableiten der Stammfunktion verschwindet. Und das geschieht, indem gerade dieser Faktor im Nenner steht:
$F(x) = [mm] \bruch{1}{a}*e^{ax+b}$ [/mm]

Verständlich?

Schöne Grüße,
ardikde

Bezug
                                
Bezug
Stammfunktion von E-Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:43 So 20.08.2006
Autor: Marion_

Hi ardik,

habs verstanden, danke für deine Hilfe.

Gruß
Marion.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de