www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Stammfunktion von Log-Funktion
Stammfunktion von Log-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion von Log-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Mo 14.02.2011
Autor: dudu93

Hallo. Ich brauche Hilfe bei der Bildung der Stammfunktion einer Log-Funktion. Sie lautet:

[mm] g(s)=(1-\bruch{1}{2}s)^-1 [/mm]

Diese Fkt. kann man ja auch unter einen Bruchstrich mit 1 als Zähler schreiben.

Die Stammfunktion soll sein:

F(x)=(-2)ln |1-1/s|

Meine Frage ist, woher das -2 herkommt?

LG

        
Bezug
Stammfunktion von Log-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Mo 14.02.2011
Autor: leduart

Hallo

> Hallo. Ich brauche Hilfe bei der Bildung der Stammfunktion
> einer Log-Funktion. Sie lautet:
>  
> [mm]g(s)=(1-\bruch{1}{2}s)^-1[/mm]
>  
> Diese Fkt. kann man ja auch unter einen Bruchstrich mit 1
> als Zähler schreiben.
>
> Die Stammfunktion soll sein:
>  
> F(x)=(-2)ln |1-1/s|

das ist falsch, richtig F(x)=(-2)ln [mm] $(1-\bruch{1}{2}s)$ [/mm]
differenziere F, dann siehst dus, oder mach die Substitution [mm] $z=(1-\bruch{1}{2}s)$ dz=-\bruch{1}{2}ds [/mm]
Gruss leduart

>  
> LG


Bezug
                
Bezug
Stammfunktion von Log-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Mo 14.02.2011
Autor: dudu93

Danke für die Antwort. Aber was meinst du jetzt genau damit?

Bezug
                        
Bezug
Stammfunktion von Log-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Mo 14.02.2011
Autor: Steffi21

Hallo

[mm] \integral_{}^{}{\bruch{1}{1-\bruch{1}{2}s} ds} [/mm]

[mm] z:=1-\bruch{1}{2}s [/mm]

[mm] \bruch{dz}{ds}=-\bruch{1}{2} [/mm]

ds=-2dz

[mm] \integral_{}^{}{\bruch{1}{z}*(-2dz)} [/mm]

[mm] =-2*\integral_{}^{}{\bruch{1}{z}dz} [/mm]

jetzt du

Steffi

Bezug
                                
Bezug
Stammfunktion von Log-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Mo 14.02.2011
Autor: dudu93

Hallo, irgendwie stehe ich gerade total auf dem Schlauch.
Das sagt mir nichts...kann man sich auch einfach so merken, dass es einfach nur der Reziproke vom Faktor mit dem s ist?

Bezug
                                        
Bezug
Stammfunktion von Log-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Mo 14.02.2011
Autor: Steffi21

Hallo, offenbar sagt dir die Substitution noch nichts, also bilde die Ableitung von F(x) Steffi

Bezug
                                        
Bezug
Stammfunktion von Log-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Mo 14.02.2011
Autor: leduart

Hallo
eigentlich bleibt nichts mehr anderes übrig, als dich zu fragen:
1-Wie hättest du deine fkt denn integrert?
2. wenn irgendwo steht
[mm]F(x)=\integral{f(x) dx}[/mm]
weisst du, dass du nachprüfen kannst ob F(x) wirklich ne Lösung ist, weil du weisst F'(x)=f(x)
Niemand muss irgendwie begründen, wie er auf ne Stammfunktion gekommen ist, wenn er zeigen kann dass F'=f ist.
woher sonst weisst oder warum glabst du , dass [mm] $ln(x)+C=\integral{1/x dx}$ [/mm]
oder warum [mm] $sin(x)=\integral{cos(x) dx}$ [/mm] ist?
Gruss leduart



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de