Stammfunktion von Vektorfeld < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Untersuchen Sie, ob das folgende Vektorfeld ein Gradientenfeld ist. Falls ja, bestimmen Sie eine Stammfunktion. |
Ich bin bei dieser Aufgabe leider maximal verwirrt. In meinem Skript steht einerseits diese Definition:
"Sei G ein Gebiet in [mm] $\mathbb{R}^n$, [/mm] d.h. eine nichtleere, zusammenhängende, offene Teilmenge von [mm] $\mathbb{R}^n$, [/mm] und seien $f : G [mm] \to \mathbb{R}^n$ [/mm] und $F : G [mm] \to \mathbb{R}$ [/mm] gegebene Funktionen. Ist $F$ differenzierbar mit [mm] ${}^{t} F^{\prime}(x) [/mm] = f(x)$ für jedes $x [mm] \in [/mm] G$, so heißt F eine Stammfunktion von $f$."
Andererseits dieser Satz:
"Sei $G$ ein Gebiet in [mm] $\mathbb{R}^n, [/mm] und $f = [mm] {}^{t}(f_1, [/mm] ..., [mm] f_n) [/mm] : G [mm] \to $\mathbb{R}^n$ [/mm] sei stetig differenzierbar und erfülle die Integrabilitätsbedingungen
[mm] $D_if_j [/mm] = [mm] D_jf_i$ [/mm] für $1 [mm] \le [/mm] i < j [mm] \le [/mm] n$.
Ist $G$ sternförmig , d.h., gibt es einen Punkt $a [mm] \in [/mm] G$ derart, dass für jedes $u [mm] \in [/mm] G$ die Spur der Strecke $S(a,u) in $G$ enthalten ist, so besitzt $f$ eine Stammfunktion $F$, z.B. $F(u) := [mm] \int_{W_{au}} [/mm] f [mm] \dot [/mm] dx$ für $u [mm] \in [/mm] G$, wobei [mm] $W_{au}$ [/mm] irgendeine stückweise glatte Kurve mit Anfangspunkt $a$ und Endpunkt $u$ ist, die ganz in $G$ verläuft."
Zu diesem Satz gibt es noch ein Beispiel, dessen Rechnung ich irgendwie etwas verwirrend finde. Meine Kommilitonen haben die Aufgabe durch "scharfes Hinsehen" gelöst und sind auf die Stammfunktion [mm] $G(x_1, x_2, x_3) [/mm] = [mm] \frac{x_1^2 x_2}{2x_3} [/mm] - [mm] \frac{x_2^2}{2} [/mm] gekommen, was Sinn ergibt, wenn man das Ganze ableitet. Ich hingegen hab mir das Leben schwer gemacht und versucht, nach dem zitierten Satz vorzugehen und bin auf ein ganz anderes Ergebnis gekommen. Also irgendetwas verstehe ich hieran phänomenal falsch, nur was:
Es gilt
[mm] $\bruch{\partial g_1}{x_1}(x) [/mm] = [mm] \bruch{x_2}{x_3}$, $\bruch{\partial g_2}{x_2}(x) [/mm] = [mm] \bruch{x_1}{x_3}$, $\bruch{\partial g_3}{x_3}(x) [/mm] = [mm] -\bruch{x_1 x_2}{x_3^2}$
[/mm]
[mm] $\bruch{\partial g_2}{x_1}(x) [/mm] = [mm] \bruch{x_1}{x_3}$, $\bruch{\partial g_2}{x_2}(x) [/mm] = -1$, [mm] $\bruch{\partial g_2}{x_3}(x) [/mm] = [mm] -\bruch{x_1^2}{2x_3^2}$
[/mm]
[mm] $\bruch{\partial g_3}{x_1}(x) [/mm] = [mm] -\bruch{x_1 x_2}{x_3^2}$, $\bruch{\partial g_3}{x_2}(x) [/mm] = [mm] -\bruch{x_1}{2 x_3^2}$, $\bruch{\partial g_3}{x_3}(x) [/mm] = [mm] \bruch{x_1^2 x_2}{x_3^2}$
[/mm]
Wegen [mm] $\bruch{\partial g_1}{x_2} [/mm] = [mm] \bruch{\partial g_2}{x_1}$, $\bruch{\partial g_1}{x_3} [/mm] = [mm] \bruch{\partial g_3}{x_1}$, $\bruch{\partial g_2}{x_3} [/mm] = [mm] \bruch{\partial g_3}{x_2}$ [/mm] ist die Integrabilitätsbedingung erfüllt.
Sei $a = [mm] \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, [/mm] $x = [mm] \begin{pmatrix} u_1 \\ 0 \\ 1 \end{pmatrix}$, [/mm] $y = [mm] \begin{pmatrix} u_1 \\ u_2 \\ 1 \end{pmatrix}$, [/mm] $u = [mm] \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$. [/mm] Dann ist [mm] $W_{au}$ [/mm] stückweise glatt, denn $S(a,x) = [mm] \begin{pmatrix} u_1 t \\ 0 \\ 1 \end{pmatrix}$, [/mm] $S(x,y) = [mm] \begin{pmatrix} u_1 \\ u_2 t \\ 1 \end{pmatrix}$ [/mm] und $S(y,u) = [mm] \begin{pmatrix} u_1 \\ u_2 \\ 1 + (u_3 - 1)t \end{pmatrix}$ [/mm] sind glatt.
Mit
[mm] $\dot{S(a,x)} [/mm] = [mm] \begin{pmatrix} u_1 \\ 0 \\ 0 \end{pmatrix}$, $\dot{S(x,y)} [/mm] = [mm] \begin{pmatrix} 0 \\ u_2 \\ 0 \end{pmatrix}$, $\dot{S(y,u)} [/mm] = [mm] \begin{pmatrix} 0 \\ 0 \\ u_3 - 1 \end{pmatrix}$
[/mm]
berechnet man nun
[mm] $G(\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}) [/mm] = [mm] \integral_{W_{au}} [/mm] g [mm] \cdot [/mm] dt = [mm] \integral_{W_{ax}} [/mm] g [mm] \cdot [/mm] dt + [mm] \integral_{W_{xy}} [/mm] g [mm] \cdot [/mm] dt + [mm] \integral_{W_{yu}} [/mm] g [mm] \cdot [/mm] dt = [mm] \integral_{0}^{1} [/mm] g(S(a, x)) [mm] \cdot \dot{S(a, x)} [/mm] dt + [mm] \integral_{0}^{1} [/mm] g(S(x, y)) [mm] \cdot \dot{S(x, y)} [/mm] dt = [mm] \integral_{0}^{1} [/mm] g(S(y, u)) [mm] \cdot \dot{S(y, u)} [/mm] dt = [mm] \integral_{0}^{1} \begin{pmatrix} 0 \\ \bruch{(u_1 t)^2}{2} \\ 0 \end{pmatrix} \cdot \begin{pmatrix} u_1 \\ 0 \\ 0 \end{pmatrix} [/mm] dt$ $+ [mm] \integral_{0}^{1} \begin{pmatrix} \bruch{u_1 u_2 t}{1} \\ \bruch{u_1^2}{2} - u_2 t \\ -\bruch{u_1^2 u_2 t}{2} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ u_2 \\ 0 \end{pmatrix} [/mm] dt + [mm] \integral_{0}^{1} \begin{pmatrix} \bruch{u_1 u_2}{(1 + (u_3 - 1)t)} \\ \bruch{u_1^2}{2 (1 + (u_3 - 1)t)} - u_2 \\ -\bruch{u_1^2 u_2}{2 (1 + (u_3 - 1)t)^2} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ u_3 - 1 \end{pmatrix} [/mm] dt = [mm] \integral_{0}^{1} \bruch{u_1^2 u_2}{2} [/mm] dt - [mm] \integral_{0}^{1} u_2^2 [/mm] t dt - [mm] \integral_{0}^{1} \bruch{ u_1^2 u_2(u_3 - 1)}{2 + (4 u_3 - 4) t + (2 u_3^2 - 4 u_3 + 4) t^2} [/mm] dt = [mm] \bruch{1}{2}((u_1^2 [/mm] - [mm] u_2)u_2 [/mm] - [mm] u_1^2 u_2 (u_3 [/mm] - 1) [mm] \arctan (u_3^2 [/mm] - [mm] u_3+1) [/mm] + [mm] u_1^2 u_2 (u_3 [/mm] - 1) [mm] \arctan (u_3-1))$
[/mm]
Wäre lieb wenn sich das jemand mal anschaut.
Danke und Gruß,
Martin
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:07 Fr 18.06.2021 | Autor: | fred97 |
> Untersuchen Sie, ob das folgende Vektorfeld ein
> Gradientenfeld ist. Falls ja, bestimmen Sie eine
> Stammfunktion.
>
> Ich bin bei dieser Aufgabe leider maximal verwirrt. In
> meinem Skript steht einerseits diese Definition:
>
> "Sei G ein Gebiet in [mm]\mathbb{R}^n[/mm], d.h. eine nichtleere,
> zusammenhängende, offene Teilmenge von [mm]\mathbb{R}^n[/mm], und
> seien [mm]f : G \to \mathbb{R}^n[/mm] und [mm]F : G \to \mathbb{R}[/mm]
> gegebene Funktionen. Ist [mm]F[/mm] differenzierbar mit [mm]{}^{t} F^{\prime}(x) = f(x)[/mm]
> für jedes [mm]x \in G[/mm], so heißt F eine Stammfunktion von [mm]f[/mm]."
>
> Andererseits dieser Satz:
>
> "Sei [mm]G[/mm] ein Gebiet in [mm]\mathbb{R}^n, und [/mm]f = [mm]{}^{t}(f_1,[/mm] ...,
> [mm]f_n)[/mm] : G [mm]\to[/mm] [mm]\mathbb{R}^n[/mm] sei stetig differenzierbar und
> erfülle die Integrabilitätsbedingungen
>
> [mm]D_if_j = D_jf_i[/mm] für [mm]1 \le i < j \le n[/mm].
>
> Ist $G$ sternförmig , d.h., gibt es einen Punkt $a [mm]\in[/mm] G$
> derart, dass für jedes $u [mm]\in[/mm] G$ die Spur der Strecke
> $S(a,u) in $G$ enthalten ist, so besitzt $f$ eine
> Stammfunktion $F$, z.B. $F(u) := [mm]\int_{W_{au}}[/mm] f [mm]\dot[/mm] dx$
> für $u [mm]\in[/mm] G$, wobei [mm]$W_{au}$[/mm] irgendeine stückweise
> glatte Kurve mit Anfangspunkt $a$ und Endpunkt $u$ ist, die
> ganz in $G$ verläuft."
>
> Zu diesem Satz gibt es noch ein Beispiel, dessen Rechnung
> ich irgendwie etwas verwirrend finde. Meine Kommilitonen
> haben die Aufgabe durch "scharfes Hinsehen" gelöst und
> sind auf die Stammfunktion [mm]$G(x_1, x_2, x_3)[/mm] = [mm]\frac{x_1^2 x_2}{2x_3}[/mm]
> - [mm]\frac{x_2^2}{2}[/mm]
Oben ist G ein sternförmiges Gebiet und jetzt bez. Du mit G eine Stammfunktion. Das ist gabz schlecht.
Schön wäre es, wenn Du verraten könntes, was in Deiner speziellen Situation das Gebiet G ist und welche Funktion g zu integrieren ist.
Tu das, dann schau ich mir das ganze (vielleicht) noch mal an.
Weiter unten hast Du noch einige Schreibfehler.
> gekommen, was Sinn ergibt, wenn man das
> Ganze ableitet. Ich hingegen hab mir das Leben schwer
> gemacht und versucht, nach dem zitierten Satz vorzugehen
> und bin auf ein ganz anderes Ergebnis gekommen. Also
> irgendetwas verstehe ich hieran phänomenal falsch, nur
> was:
>
> Es gilt
>
> [mm]\bruch{\partial g_1}{x_1}(x) = \bruch{x_2}{x_3}[/mm],
> [mm]\bruch{\partial g_2}{x_2}(x) = \bruch{x_1}{x_3}[/mm],
> [mm]\bruch{\partial g_3}{x_3}(x) = -\bruch{x_1 x_2}{x_3^2}[/mm]
Die zweite Ableitung muss doch so lauten: [mm]\bruch{\partial g_1}{ \partial x_2}(x) = \bruch{x_1}{x_3}[/mm]
und die dritte Ableitung so
[mm]\bruch{\partial g_1}{ \partial x_3}(x) = -\bruch{x_1 x_2}{x_3^2}[/mm]
>
> [mm]\bruch{\partial g_2}{x_1}(x) = \bruch{x_1}{x_3}[/mm],
> [mm]\bruch{\partial g_2}{x_2}(x) = -1[/mm], [mm]\bruch{\partial g_2}{x_3}(x) = -\bruch{x_1^2}{2x_3^2}[/mm]
>
> [mm]\bruch{\partial g_3}{x_1}(x) = -\bruch{x_1 x_2}{x_3^2}[/mm],
> [mm]\bruch{\partial g_3}{x_2}(x) = -\bruch{x_1}{2 x_3^2}[/mm],
> [mm]\bruch{\partial g_3}{x_3}(x) = \bruch{x_1^2 x_2}{x_3^2}[/mm]
>
> Wegen [mm]\bruch{\partial g_1}{x_2} = \bruch{\partial g_2}{x_1}[/mm],
> [mm]\bruch{\partial g_1}{x_3} = \bruch{\partial g_3}{x_1}[/mm],
> [mm]\bruch{\partial g_2}{x_3} = \bruch{\partial g_3}{x_2}[/mm] ist
> die Integrabilitätsbedingung erfüllt.
Bei allen obigen Ableitunge hast Du im Nenner [mm] \partial [/mm] verschlampert !
Wie gesagt: schreibt Dein Anliege sauber auf, dann hat man mehr Lust, Dir zu helfen.
> Sei [mm]a = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}[/mm], [mm]x = \begin{pmatrix} u_1 \\ 0 \\ 1 \end{pmatrix}[/mm],
> [mm]y = \begin{pmatrix} u_1 \\ u_2 \\ 1 \end{pmatrix}[/mm], [mm]u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}[/mm].
> Dann ist [mm]W_{au}[/mm] stückweise glatt, denn [mm]S(a,x) = \begin{pmatrix} u_1 t \\ 0 \\ 1 \end{pmatrix}[/mm],
> [mm]S(x,y) = \begin{pmatrix} u_1 \\ u_2 t \\ 1 \end{pmatrix}[/mm]
> und [mm]S(y,u) = \begin{pmatrix} u_1 \\ u_2 \\ 1 + (u_3 - 1)t \end{pmatrix}[/mm]
> sind glatt.
>
> Mit
>
> [mm]\dot{S(a,x)} = \begin{pmatrix} u_1 \\ 0 \\ 0 \end{pmatrix}[/mm],
> [mm]\dot{S(x,y)} = \begin{pmatrix} 0 \\ u_2 \\ 0 \end{pmatrix}[/mm],
> [mm]\dot{S(y,u)} = \begin{pmatrix} 0 \\ 0 \\ u_3 - 1 \end{pmatrix}[/mm]
>
> berechnet man nun
>
> [mm]G(\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}) = \integral_{W_{au}} g \cdot dt = \integral_{W_{ax}} g \cdot dt + \integral_{W_{xy}} g \cdot dt + \integral_{W_{yu}} g \cdot dt = \integral_{0}^{1} g(S(a, x)) \cdot \dot{S(a, x)} dt + \integral_{0}^{1} g(S(x, y)) \cdot \dot{S(x, y)} dt = \integral_{0}^{1} g(S(y, u)) \cdot \dot{S(y, u)} dt = \integral_{0}^{1} \begin{pmatrix} 0 \\ \bruch{(u_1 t)^2}{2} \\ 0 \end{pmatrix} \cdot \begin{pmatrix} u_1 \\ 0 \\ 0 \end{pmatrix} dt[/mm]
> [mm]+ \integral_{0}^{1} \begin{pmatrix} \bruch{u_1 u_2 t}{1} \\ \bruch{u_1^2}{2} - u_2 t \\ -\bruch{u_1^2 u_2 t}{2} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ u_2 \\ 0 \end{pmatrix} dt + \integral_{0}^{1} \begin{pmatrix} \bruch{u_1 u_2}{(1 + (u_3 - 1)t)} \\ \bruch{u_1^2}{2 (1 + (u_3 - 1)t)} - u_2 \\ -\bruch{u_1^2 u_2}{2 (1 + (u_3 - 1)t)^2} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ u_3 - 1 \end{pmatrix} dt = \integral_{0}^{1} \bruch{u_1^2 u_2}{2} dt - \integral_{0}^{1} u_2^2 t dt - \integral_{0}^{1} \bruch{ u_1^2 u_2(u_3 - 1)}{2 + (4 u_3 - 4) t + (2 u_3^2 - 4 u_3 + 4) t^2} dt = \bruch{1}{2}((u_1^2 - u_2)u_2 - u_1^2 u_2 (u_3 - 1) \arctan (u_3^2 - u_3+1) + u_1^2 u_2 (u_3 - 1) \arctan (u_3-1))[/mm]
>
> Wäre lieb wenn sich das jemand mal anschaut.
>
> Danke und Gruß,
>
> Martin
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:29 Fr 18.06.2021 | Autor: | sancho1980 |
> Oben ist G ein sternförmiges Gebiet und jetzt bez. Du mit
> G eine Stammfunktion. Das ist gabz schlecht.
Oh das ist mir gar nicht aufgefallen.
>
> Schön wäre es, wenn Du verraten könntes, was in Deiner
> speziellen Situation das Gebiet G ist und welche Funktion g
> zu integrieren ist.
>
>
> Tu das, dann schau ich mir das ganze (vielleicht) noch mal
> an.
>
>
> Weiter unten hast Du noch einige Schreibfehler.
Entschuldigung, aber es war spät, und ich hatte diesen Post mehrmals wegen irgendwelcher Darstellungsfehler korrigiert und nachgebessert, am Ende hab ich wohl etwas verschlampt. Ein Kommilitone hat es sich angeschaut, es war nu ein Rechenfehler!
|
|
|
|