www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Stammfunktion von e^x
Stammfunktion von e^x < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion von e^x: Frage
Status: (Frage) beantwortet Status 
Datum: 12:06 Mo 30.05.2005
Autor: wuschel

Hi Matheprofis!

Ich habe ein Problem in Mathe. Da wir jetzt schon mit unserem Buch fertig sind hat unser Lehrer uns die letzte Stunde die Herleitung der Funktion [mm] f:x=e^x [/mm] erklärt. Leider habe ich die Herleitung nicht ganz verstanden. Ich weiß zwar wie man auf die Stammfunktion kommt bei einer Beispielaufgabe, jedoch den Herleitungsweg nicht. Da ihr mir letztes Mal auch so super geholfen habt würde ich euch bitten mir diesen Weg zu erklären. Ich habe dazu auch ein paar Übungen gemacht .

So das ist der Herleitungsweg:
F:x = ex

Lim     = [f(x+h)-f(x)]/h
h [mm] \to [/mm] 0

[e^(x+h) - [mm] e^x]/h [/mm] = [mm] e^x [/mm] * [e(^h)-1]/h

X=0     [e(^h)-1]/h

[mm] e^h \ge [/mm]  h+1
e^-h  [mm] \ge [/mm] -h+1

h+1  [mm] \le e^h \le1/(1-h) [/mm]
h  [mm] \le e^h-1 \le [/mm] [1/(1-h)-1=] h/(1-h)

1 [mm] \le (e^h-1)/h \le [/mm] 1/(1-h)
1 [mm] \le (e^h-1)/h [/mm] =1

f(x)= [mm] e^x [/mm]     f’(x) = [mm] e^x [/mm]

Und hier sind ein Paar Übungen:
f(x)=e^(1-x)      f'(x)=-e^(1-x)
f(x)=e^kx          f'(x)=ke^kx    
[mm] f(x)=e^x² [/mm]          f'(x)= [mm] 2xe^x² [/mm]
f(x)=e^-x          f'(x)=-e^-x

Wäre echt lieb wenn mir jemdand weiter helfen könnte.

Liebe Grüße
Lisa


        
Bezug
Stammfunktion von e^x: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Mo 30.05.2005
Autor: informix

Hallo Lisa,
> Hi Matheprofis!
>  
> Ich habe ein Problem in Mathe. Da wir jetzt schon mit
> unserem Buch fertig sind hat unser Lehrer uns die letzte
> Stunde die Herleitung der Funktion [mm]f:x=e^x[/mm] erklärt. Leider
> habe ich die Herleitung nicht ganz verstanden. Ich weiß
> zwar wie man auf die Stammfunktion kommt bei einer
> Beispielaufgabe, jedoch den Herleitungsweg nicht. Da ihr
> mir letztes Mal auch so super geholfen habt würde ich euch
> bitten mir diesen Weg zu erklären. Ich habe dazu auch ein
> paar Übungen gemacht .
>  

Es wäre schön, wenn du in Zukunft unseren Formeleditor benutzen würdest; denn damit lassen sich die Formeln viel leichter lesen:

> So das ist der Herleitungsweg:

Sei $f(x) = [mm] e^x$, [/mm] dann ist $F(x) = [mm] e^x$ [/mm] eine Stammfunktion von f .

>  F:x = ex
>  
> Lim     = [f(x+h)-f(x)]/h
>  h [mm]\to[/mm] 0

$ [mm] \limes_{h\rightarrow 0}\bruch{f(x+h)-f(x)}{h}$ [/mm]
[mm] $=\limes_{h\rightarrow 0} \bruch{e^{x+h} - e^x}{h} =\limes_{h\rightarrow 0} e^x* \bruch{e^h - 1}{h}$ [/mm]

> [e^(x+h) - [mm]e^x]/h[/mm] = [mm]e^x[/mm] * [e(^h)-1]/h
>  
> X=0     [e(^h)-1]/h
>  
> [mm]e^h \ge[/mm]  h+1
>  e^-h  [mm]\ge[/mm] -h+1
>  
> h+1  [mm]\le e^h \le1/(1-h)[/mm]
>  h  [mm]\le e^h-1 \le[/mm] [1/(1-h)-1=]
> h/(1-h)

hier zeigst du, dass [mm] $\limes_{h\rightarrow 0} \bruch{e^h - 1}{h} [/mm] = 1$  ist:

> 1 [mm]\le (e^h-1)/h \le[/mm] 1/(1-h)
>  1 [mm]\le (e^h-1)/h[/mm] =1
>  

deine weiteren Überlegungen sind korrekt - was also sind deine Fragen?! [verwirrt]

> f(x)= [mm]e^x[/mm]     f’(x) = [mm]e^x[/mm]

besser: F(x) = [mm] e^x \Rightarrow [/mm] F'(x) = [mm] e^x [/mm] = f(x)

>  
> Und hier sind ein Paar Übungen:

hier wird jeweils die MBKettenregel angewandt:

>  f(x)=e^(1-x)      f'(x)=-e^(1-x)
>  f(x)=e^kx          f'(x)=ke^kx    
> [mm]f(x)=e^x²[/mm]          f'(x)= [mm]2xe^x²[/mm]
>  f(x)=e^-x          f'(x)=-e^-x
>  

alles [ok]

> Wäre echt lieb wenn mir jemdand weiter helfen könnte.
>  

gerne, aber stelle beim nächsten Mal konkretere Fragen, damit wir nicht so im Nebel stochern müssen. ;-)


Bezug
                
Bezug
Stammfunktion von e^x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Mo 30.05.2005
Autor: wuschel

Hi  Informix!

Vielen Dank für deine Hilfe!

Ich versuche es nächste Mal den Formeleditor zu benutzen. Leider weiß ich nicht so genau wie das geht, kann es aber probieren. Danke das du mich darauf hingewiesen hast!

Liebe Grüße
Lisa

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de