www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktionbestimmung
Stammfunktionbestimmung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktionbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Mi 01.03.2006
Autor: Stefo

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich bin bei einer Aufgabe auf eine Funktion gestoßen, die ich nicht integrieren kann, vielleicht könnt ihr mir dabei helfen.

Die Funktion lautet:

1/(1-xquadrat)quadrat

Ich hoffe ihr versteht die Funktion so, ich kanns nicht anders darstellen.

Ich hab es mit Substitution versucht, aber ich weiß nicht, was ich substituieren soll. Hoffe ihr könnt mir helfen.

Danke!

Stefo

        
Bezug
Stammfunktionbestimmung: Partialbruchzerlegung
Status: (Antwort) fertig Status 
Datum: 16:03 Mi 01.03.2006
Autor: Roadrunner

Hallo Stefan,

[willkommenmr] !!


Meinst Du hier diese Funktion? $f(x) \ = \ [mm] \bruch{1}{\left(1-x^2\right)^2}$ [/mm]

Dabei haben wir hier so einen tollen Formeleditor ;-) ...


Mit Substitution kommst Du hier nicht weit, Du musst diesen Bruch gemäß Partialbruchzerlegung auseinander ziehen und dann integrieren:

$f(x) \ = \ [mm] \bruch{1}{\left(1-x^2\right)^2} [/mm] \ = \ [mm] \bruch{1}{[(1-x)*(1+x)]^2} [/mm] \ = \ [mm] \bruch{1}{(1-x)^2*(1+x)^2} [/mm] \ = \ [mm] \bruch{A}{1-x}+\bruch{B}{(1-x)^2}+\bruch{C}{1+x}+\bruch{D}{(1+x)^2}$ [/mm]


Gruß vom
Roadrunner


Bezug
                
Bezug
Stammfunktionbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Mi 01.03.2006
Autor: Stefo

Danke erstmal!
Aber: Was meinst du mit A,B,C und D? Und wie bist du vom vorletzten auf den letzten Schritt gekommen?


Bezug
                        
Bezug
Stammfunktionbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Mi 01.03.2006
Autor: Herby

Hallo Stefan,

> Danke erstmal!
>  Aber: Was meinst du mit A,B,C und D?

A,B,..  sind noch Koeffizienten, die du bestimmen musst, aber so weit sind wir noch nicht.

> Und wie bist du vom vorletzten auf den letzten Schritt gekommen?

Das ist das allgemein Vorgehen einer []Partialbruchzerlegung

Wenn du auf den Link klickst, landest du bei Wiki und kannst dir das in Ruhe mal anschauen.

da du zwei Mal dieselbe Nullstelle hast, wird diese mit dem Quadrat eingeführt.

z.B.

[mm] x_{1}=x_{2}=5 \Rightarrow [/mm] (x-5) und (x-5)²


zum weiteren Vorgehen:

du musst jetzt mit dem Hauptnenner multiplizieren, dann für x passende Werte einsetzen, so dass immer ein Faktor identisch "Null" wird.

Somit gelangst du zu einem Gleichungssystem mit 4 Unbekannten und vier Gleichungen, was sich lösen läßt.

Bei Problemen, frag' jederzeit nach :-)


Liebe Grüße
Herby





Bezug
                
Bezug
Stammfunktionbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:41 Mi 01.03.2006
Autor: Stefo

Okay, danke erstmal! Ich hab das zwar jetzt noch nicht durchblickt aber ich schau mir das jetzt mal an.

Tschau Stefo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de