www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktionen
Stammfunktionen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktionen: Hausaufgaben
Status: (Frage) beantwortet Status 
Datum: 14:38 Mo 29.01.2007
Autor: Kristof

Hallo,
ich habe ein Problem.
Weiß nicht wie ich da weiterkommen soll.
Ich benötige um eine Aufgabe zu rechnen die Stammfunktion von ln (x) habe keinerlei Ahnung wie ich das machen soll.

Wäre lieb wenn ihr mir da helfen könntet.
Mit herleitung wäre natürlich super Hilfreich.

Danke im Voraus,
Kristof

        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Mo 29.01.2007
Autor: Riley

Hi Kristof,

versuchs mal mit der produktregel:

[mm] \integral_{}^{}{1 \cdot ln(x) dx} [/mm]

mit f'(x) = 1 und g(x) = ln(x)

viele grüße
riley

Bezug
                
Bezug
Stammfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Mo 29.01.2007
Autor: Kristof


> Hi Kristof,
>  
> versuchs mal mit der produktregel:
>  
> [mm]\integral_{}^{}{1 \cdot ln(x) dx}[/mm]
>  
> mit f'(x) = 1 und g(x) = ln(x)
>  
> viele grüße
>  riley

Die hatten wir noch nicht,
wäre lieb wenn du mir einfach die Stammfunktion geben könntest.

Bezug
                        
Bezug
Stammfunktionen: partielle Integration
Status: (Antwort) fertig Status 
Datum: 15:19 Mo 29.01.2007
Autor: Roadrunner

Hallo Kristof!


Vielleicht ist hier der Ausdruck "Produktregel" bei der Interation irreführend. Korrekt heißt dieses angedeutete Verfahren partielle Integration:

[mm] $\integral{u'*v \ dx} [/mm] \ = \ [mm] u*v-\integral{u*v' \ dx}$ [/mm]


Diese Methode solltest Du aber bereits kennen bzw. gehört haben, wenn Du das Integral [mm] $\integral{\ln(x) \ dx} [/mm] \ = \ [mm] \integral{\red{1}*\ln(x) \ dx}$ [/mm] lösen sollst.


Gruß vom
Roadrunner


PS: auch wenn ich von fertigen Lösungen nichts halte, da sie nicht wirklich weiterhelfen ... die Stammfunktion lautet [mm] $x*\ln(x)-x+C$ [/mm] .


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de