www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Stammfunktionen
Stammfunktionen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktionen: Stammfunktionen von Brüchen?
Status: (Frage) beantwortet Status 
Datum: 22:14 Fr 06.06.2008
Autor: summer00

Aufgabe
Berechnen Sie die folgenden Integrale:
[mm] \integral_{-1}^{1}{\bruch{3}{2x^{2}+2} dx} [/mm]

Hallo!
Könnte uns bitte jemand erklären, wie man da jetzt vorgeht? Wie bildet man bei sowas die Stammfunktion? Was da heraus kommt, haben wir durch ein Prog herausbekommen, aber wir verstehen nicht, wie man das macht.
Müssen wir ausserdem noch etwas beachten?Z.b. die eingeschlossenen Flächen einmal positiv oder negativ sind?
Vielen Dank im Voraus

        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Fr 06.06.2008
Autor: abakus


> Berechnen Sie die folgenden Integrale:
>  [mm]\integral_{-1}^{1}{\bruch{3}{2x^{2}+2} dx}[/mm]
>  Hallo!
>  Könnte uns bitte jemand erklären, wie man da jetzt
> vorgeht? Wie bildet man bei sowas die Stammfunktion? Was da
> heraus kommt, haben wir durch ein Prog herausbekommen, aber
> wir verstehen nicht, wie man das macht.
>  Müssen wir ausserdem noch etwas beachten?Z.b. die
> eingeschlossenen Flächen einmal positiv oder negativ sind?

Das sind sie nicht. Im Nenner lässt sich noch der Faktor 2 ausklammern, damit gilt
[mm] \integral_{-1}^{1}{\bruch{3}{2x^{2}+2} dx}=\bruch{3}{2}]\integral_{-1}^{1}{\bruch{1}{x^{2}+1} dx} [/mm]
Wegen der Symmetrie zur y-Achse kann man daraus noch
[mm] \integral_{-1}^{1}{\bruch{1}{x^{2}+1} dx}=2*\integral_{0}^{1}{\bruch{1}{x^{2}+1} dx} [/mm] machen.
Schau mal in Formelsammlungen o.ä. nach, ob du dafür eine passende Stammfunktion findest...
Gruß Abakus




Bezug
                
Bezug
Stammfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:37 Fr 06.06.2008
Autor: summer00

Danke erst einmal für die schnelle Antwort

Aber könntest du uns erklären, wie man ganz allgemein von Brüchen die Stammfunktion bilden kann? ich denke mal, nicht alle sind "bekannte" Brüche, wie in diesem Beispiel.
Wie kommt man ausserdem darauf, dass eine Symmetrie zur Y Achse besteht? Sollten wir von den Funktionen lieber immer eine Skizze machen oder wie sollte ich da drauf kommen?

Bezug
                        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Fr 06.06.2008
Autor: sunshinekid

Dazu gibt es die Holzhammer-Methode:

Partialbruchzerlegung!

Damit lässt sich ein Bruch durch die Nullstellen seines Nenners in Brüche aufteilen, von denen die Stammfunktionen bekannt sind.

MfG Sunny

Bezug
        
Bezug
Stammfunktionen: Integral
Status: (Frage) beantwortet Status 
Datum: 22:29 Fr 06.06.2008
Autor: summer00

Aufgabe
[mm] \integral_{\pi}^{3}{\bruch{1}{\wurzel{x}} dx} [/mm]

Die Aufleitung hiervon ist doch [mm] F=ln\wurzel{x} [/mm]

Der Integral lässt sich bestimmen mit [mm] F(3)-F({\pi}). [/mm] Aber da kommt ja was komisches heraus oder gibt es da einen Trick, wie sich das vereinfachen lässt?

Bezug
                
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Fr 06.06.2008
Autor: abakus


> [mm]\integral_{\pi}^{3}{\bruch{1}{\wurzel{x}} dx}[/mm]
>  Die
> Aufleitung hiervon ist doch [mm]F=ln \wurzel{x}[/mm]

Sicher???
Leite mal F(x) mit der Kettenregel ab.
Wenn du dann gemerkt hast, dass nicht das Gewünschte entsteht, solltest du mal daran denken, dass [mm] \bruch{1}{\wurzel{x}}=x^{-0,5} [/mm] gilt. Und wie lautet davon die Stammfunktion?


>  
> Der Integral lässt sich bestimmen mit [mm]F(3)-F({\pi}).[/mm] Aber
> da kommt ja was komisches heraus oder gibt es da einen
> Trick, wie sich das vereinfachen lässt?


Bezug
                        
Bezug
Stammfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:46 Fr 06.06.2008
Autor: summer00

ohja. Danke für den Hinweis. Die Stammfunktion ist [mm] 2x^{\bruch{1}{2}} [/mm]
Dann bekommen wir [mm] 2\wurzel{3}-2{\wurzel{\pi}}. [/mm] Lässt sich das weiter verkürzen oder sind wir jetzt fertig?

Bezug
                                
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:52 Fr 06.06.2008
Autor: schachuzipus

Hallo summer,

> ohja. Danke für den Hinweis. Die Stammfunktion ist
> [mm]2x^{\bruch{1}{2}}[/mm] [ok]
>  Dann bekommen wir [mm]2\wurzel{3}-2{\wurzel{\pi}}.[/mm] [daumenhoch]

> Lässt sich das weiter verkürzen oder sind wir jetzt fertig?

Hmm, du könntest noch die 2 ausklammern, aber an sich ist es so schon ok ;-)

LG

schachuzipus


Bezug
                                        
Bezug
Stammfunktionen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:30 Fr 06.06.2008
Autor: summer00

Danke euch allen für die schnellen Antworten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de