www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Stammfunktionen
Stammfunktionen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktionen: finde nicht die passende regel
Status: (Frage) beantwortet Status 
Datum: 08:56 Sa 16.04.2005
Autor: twed

Hallo.
Ich soll folgende Stammfunktionen bilden, komme aber auf keine lösung, da ich mir mit der Subtitution nicht sicher bin.

[mm] \integral_{}^{}{e^xcos^x} [/mm]
[mm] \integral_{}^{}{\bruch{3x+5}{(x^2+2x+2)^2}} [/mm]
[mm] \integral_{}^{}{\bruch{1}{\wurzel{sinxcos^3x}}} [/mm]

durch umstellen mit  Potenzregeln bin ich nicht weiter gekommen, und zur Subtitution fällt mir nichts ein. Vielleicht hat ja irgenwer eine Idee?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Stammfunktionen: 1. Integral: part. Integration
Status: (Antwort) fertig Status 
Datum: 09:12 Sa 16.04.2005
Autor: Loddar

Hallo twed,

auch Dir hier ein [willkommenmr] !!

> [mm]\integral_{}^{}{e^xcos^x}[/mm]

Du meinst doch sicher [mm]\integral_{}^{}{e^x*\cos(\red{x}) \ dx}[/mm] , oder?


Hier mußt Du dem Integral mit partieller Integration zu Leibe rücken
(siehe auch in unserer MatheBank unter MBIntegrationsregel).

[mm] $\integral_{}^{} [/mm] {f * g' \ dx} \ = \ f*g \ - \ [mm] \integral_{}^{} [/mm] {f' * g \ dx}$


Und weil es so schön ist, mußt Du diese Methode gleich zwei-mal anwenden. Dann entsteht auf der rechten Seite ein Dir bekannter Ausdruck, so daß Du nach Deinem gesuchten Integral umstellen kannst.


Gruß
Loddar


Bezug
        
Bezug
Stammfunktionen: 2. Integral
Status: (Antwort) fertig Status 
Datum: 09:58 Sa 16.04.2005
Autor: Max

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo twed,

dir ein herzliches
[willkommenmr]

Leider habe ich jetzt bemerkt, dass es doch nicht so leicht ist wie ich dachte *selbstüberschätzung*

Auf jeden Fall kann man in

$\frac{3x+5}{(x^2+2x+2)^2}=\frac{1}{x^2+2x+2}+\frac{-x^2+x+3}{(x^2+2x+2)^2$

zerlegen. Der letzte Summand hat den Nenner $(x^2+2x+2)^2$, d.h. man kann vermuten, dass er durch einen Ausdruck der Form $\frac{a x +b}{x^2+2x+2}$ entsthet. Leitet man diesen Term ab, erhält man ein Gleichungssystem für $a$ und $b$ und damit die Stammfunktion zum zweiten Summanden.

Gruß Max

Bezug
        
Bezug
Stammfunktionen: 3. Integral
Status: (Antwort) fertig Status 
Datum: 10:22 Sa 16.04.2005
Autor: Fabian

Hallo,

Ich hab mal folgende Substitution probiert:

u=tanx

[mm] \bruch{du}{dx}=\bruch{1}{cos^{2}x} [/mm]

[mm] dx=du*cos^{2}x [/mm]


Jetzt hab ich das Integral ein wenig umgeformt:

[mm] \integral {\bruch{1}{\wurzel{\bruch{sinx}{cosx}}*cos^{2}x}*cos^{2}x*du} [/mm]

[mm] \integral{\bruch{1}{\wurzel{tanx}}*du}= \integral{\bruch{1}{\wurzel{u}}*du} [/mm]

Alle Angaben ohne Gewähr!!! Ich bin mir nicht ganz sicher , ob man das so machen darf.

Gruß Fabian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de