www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Stammfunktionen
Stammfunktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktionen: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:31 Di 10.01.2012
Autor: DudiPupan

Aufgabe
Bestimmen Sie die Definitionsbereiche und die Stammfunktion folgender Funktionen:
$(i) x [mm] \mapsto [/mm] 43tan(x)$
$(ii) x [mm] \mapsto 10e^x x^2$ [/mm]
$(iii) x [mm] \mapsto \bruch{x^2+1}{x^4-x^2}$ [/mm]
$(iv) x [mm] \mapsto \bruch{37}{x+xln(x)}$ [/mm]

Also die Definitionsbereiche habe ich soweit:
$(i) [mm] D=\IR \backslash \{ \bruch{k}{2} \pi | k \in \IZ \}$ [/mm]
$(ii) [mm] D=\IC$ [/mm]
$(iii) [mm] D=\IC \backslash \{-1,0,1 \}$ [/mm]
$(iv) [mm] D=\IC\backslash \{x|x\le 0\}$ [/mm]

Stimmt das soweit? :)

Ich hab nur Probleme bei den Stammfunktionen.
Bin für jede Hilfe sehr dankbar!

        
Bezug
Stammfunktionen: Definitionsbereiche
Status: (Antwort) fertig Status 
Datum: 17:01 Di 10.01.2012
Autor: Roadrunner

Hallo DudiPupan!


Grundsätzlich sehen die Definitionsbereiche gut aus. Aber warum gleitest Du plötzlich in die Menge der komplexen Zahlen [mm] $\IC$ [/mm] ab und verbleibst nicht in [mm] $\IR$ [/mm] ?


Gruß vom
Roadrunner

Bezug
                
Bezug
Stammfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:06 Di 10.01.2012
Autor: DudiPupan

Oh, sorry, das war mein Fehler.
Bin gedanklich in der Aufgabe verrutscht.
Sollten eigentlich alle in der Menge der reellen Zahlen liegen ;)

Bezug
        
Bezug
Stammfunktionen: zu Aufgabe (ii)
Status: (Antwort) fertig Status 
Datum: 17:02 Di 10.01.2012
Autor: Roadrunner

Hallo!


>  [mm](ii) x \mapsto 10e^x x^2[/mm]

Hier gilt es, zweimal partielle Integration anzuwenden.


Gruß vom
Roadrunner

Bezug
                
Bezug
Stammfunktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:38 Di 10.01.2012
Autor: DudiPupan

Also dann hätte ich folgendes:
[mm] $\integral x^2 [/mm] 10 [mm] e^x [/mm] = [mm] \integral [/mm] f* g' = [f * g ] - [mm] \integral [/mm] f' * g = [mm] [x^2 [/mm] 10 [mm] e^x [/mm] ] + [mm] \integral [/mm] -2x* [mm] 10e^x$ [/mm]
[mm] $\integral [/mm] 2x * [mm] 10e^x= \integral [/mm] f * g' = [f * g ] - [mm] \integral [/mm] f' * g = [-20x * [mm] e^x]- \integral -20e^x$ [/mm]
[mm] $\rightarrow \integral x^2 [/mm] 10 [mm] e^x= 10x^2 e^x [/mm] - 20x [mm] e^x [/mm] + 20 [mm] e^x [/mm] = [mm] 10e^x(x^2-2x+2)$ [/mm]
Stimmt das?

Bezug
                        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Di 10.01.2012
Autor: leduart

Hallo
statt nachzufragen, ob was stimmt einfach die Stammfkt differenzieren, das müssen wir auch. sie ist richtig!
es fehlt die Integrationskonstante.
Gruss leduart


Bezug
                        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Di 10.01.2012
Autor: scherzkrapferl


> Also dann hätte ich folgendes:
>  [mm]\integral x^2 10 e^x = \integral f* g' = [f * g ] - \integral f' * g = [x^2 10 e^x ] + \integral -2x* 10e^x[/mm]
>  
> [mm]\integral 2x * 10e^x= \integral f * g' = [f * g ] - \integral f' * g = [-20x * e^x]- \integral -20e^x[/mm]
>  
> [mm]\rightarrow \integral x^2 10 e^x= 10x^2 e^x - 20x e^x + 20 e^x = 10e^x(x^2-2x+2)[/mm]
>  
> Stimmt das?

ja stimmt, hast allerdings deine integrationskonstante vergessen

[mm] \integral x^2 [/mm] 10 [mm] e^x =10e^x(x^2-2x+2)+C [/mm]


Bezug
        
Bezug
Stammfunktionen: zu Aufgabe (i)
Status: (Antwort) fertig Status 
Datum: 17:03 Di 10.01.2012
Autor: Roadrunner

Hallo!


>  [mm](i) x \mapsto 43tan(x)[/mm]

Ersetze [mm] $\tan(x)$ [/mm] durch [mm] $\bruch{\sin(x)}{\cos(x)}$ [/mm] . Nun kannst Du $u \ := \ [mm] \cos(x)$ [/mm] substituieren.


Gruß vom
Roadrunner

Bezug
                
Bezug
Stammfunktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:04 Di 10.01.2012
Autor: DudiPupan

Also die erste Ableitung hätte ich mit der logarithmischen Integration gemacht:
[mm] $\integral{tan(x) dx} [/mm] = [mm] \integral{ \bruch{sin(x)}{cos(x)} dx}$ [/mm]
wähle $u(x):=cos(x)$ und somit: $u'(x)=-sin(x)$, also:
[mm] $\integral{tan(x) dx} [/mm] = [mm] -\integral{ \bruch{u'(x)}{u(x)} dx} [/mm] = -ln|u(x)|= -ln|cos(x)|$
Passt das?

Bezug
                        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Di 10.01.2012
Autor: MathePower

Hallo DudiPupan,

> Also die erste Ableitung hätte ich mit der logarithmischen
> Integration gemacht:
>  [mm]\integral{tan(x) dx} = \integral{ \bruch{sin(x)}{cos(x)} dx}[/mm]
>  
> wähle [mm]u(x):=cos(x)[/mm] und somit: [mm]u'(x)=-sin(x)[/mm], also:
>  [mm]\integral{tan(x) dx} = -\integral{ \bruch{u'(x)}{u(x)} dx} = -ln|u(x)|= -ln|cos(x)|[/mm]
>  
> Passt das?



Ja, das passt. [ok]


Gruss
MathePower







Bezug
        
Bezug
Stammfunktionen: zu Aufgabe (iv)
Status: (Antwort) fertig Status 
Datum: 17:05 Di 10.01.2012
Autor: Roadrunner

Hallo!


> [mm](iv) x \mapsto \bruch{37}{x+xln(x)}[/mm]

Klammere im Nenner $x_$ aus und substituiere anschließend $z \ := \ [mm] 1+\ln(x)$ [/mm] .


Gruß vom
Roadrunner

Bezug
                
Bezug
Stammfunktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:01 Di 10.01.2012
Autor: DudiPupan

Also ich hab zu dieser Aufgabe folgendes, aber ich glaub das stimmt so noch nicht ganz :
[mm] $\integral \bruch{37}{x+xln(x)}dx=\integral 37*\bruch{1}{x}*\bruch{1}{1+ln(x)}dx$ [/mm]
Wähle nun:
$u(x)=1+ln(x)$
somit:
$u'(x)= [mm] \bruch{1}{x}$ [/mm]
Also:
[mm] $\integral 37*\bruch{1}{x}*\bruch{1}{1+ln(x)}dx=\integral [/mm] 37* [mm] \bruch{u(x)'}{u(x)}dx=37*ln|u(x)|+C=37*ln|1+ln(x)|+C$ [/mm]
Aber das stimmt glaube ich nicht ganz, was hab ich falsch gemacht?

Bezug
                        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Di 10.01.2012
Autor: MathePower

Hallo DudiPupan,

> Also ich hab zu dieser Aufgabe folgendes, aber ich glaub
> das stimmt so noch nicht ganz :
>  [mm]\integral \bruch{37}{x+xln(x)}dx=\integral 37*\bruch{1}{x}*\bruch{1}{1+ln(x)}dx[/mm]
>  
> Wähle nun:
>  [mm]u(x)=1+ln(x)[/mm]
>  somit:
>  [mm]u'(x)= \bruch{1}{x}[/mm]
>  Also:
>  [mm]\integral 37*\bruch{1}{x}*\bruch{1}{1+ln(x)}dx=\integral 37* \bruch{u(x)'}{u(x)}dx=37*ln|u(x)|+C=37*ln|1+ln(x)|+C[/mm]
>  
> Aber das stimmt glaube ich nicht ganz, was hab ich falsch
> gemacht?


Du hast nichts falsch gemacht.


Gruss
MathePower

Bezug
                                
Bezug
Stammfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Di 10.01.2012
Autor: DudiPupan

Okay, ja, hab mich beim überprüfen verrechnet ;)
Hat mir vielleicht noch jemand einen Tipp zur iii)?

Vielen Dank :)

Bezug
                                        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Di 10.01.2012
Autor: schachuzipus

Hallo,


> Okay, ja, hab mich beim überprüfen verrechnet ;)
>  Hat mir vielleicht noch jemand einen Tipp zur iii)?

Partialbruchzerlegung des Integranden:

[mm] $\frac{x^2+1}{x^4-x^2}=\frac{x^2+1}{x^2(x+1)(x-1)}$ [/mm]

Dann den entsprechenden Partialbruchansatz und du bekommst eine Summe elementarer Integrale ...

>  
> Vielen Dank :)

Gruß

schachuzipus


Bezug
                                                
Bezug
Stammfunktionen: Ergebnis
Status: (Frage) beantwortet Status 
Datum: 18:55 Di 10.01.2012
Autor: DudiPupan

Also kann ich das dann so machen:
[mm] $\bruch{x^2+1}{x^4-x^2}=\bruch{x^2+1}{x^2(x+1)(x-1)}=\bruch{A}{x^2}+\bruch{B}{x+1}+\bruch{C}{x-1}=\bruch{x^3(B+C)+x^2(A-B+C)-A}{x^2(x+1)(x-1)}$ [/mm]
[mm] $\rightarrow [/mm] B+C=0, a-B+C=1, -A=1$
[mm] $\rightarrow [/mm] A=-1, B=-1, C=1$
Somit:
[mm] $\bruch{x^2+1}{x^4-x^2}=\bruch{-1}{x^2}+\bruch{-1}{x+1}+\bruch{1}{x-1}$ [/mm]
Also:
[mm] $\integral \bruch{-1}{x^2}+\bruch{-1}{x+1}+\bruch{1}{x-1}dx [/mm] = [mm] \bruch{1}{x}-ln|x+1|+ln|x-1|+C$ [/mm]
Woher weiß ich hier jedoch wie viele Variablen A,B,C ,.. ich brauche?
habe es nämlich erst falsch gemacht. Hängt das mit den Nullstellen zusammen?

Bezug
                                                        
Bezug
Stammfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Di 10.01.2012
Autor: MathePower

Hallo DudiPupan,

> Also kann ich das dann so machen:
>  
> [mm]\bruch{x^2+1}{x^4-x^2}=\bruch{x^2+1}{x^2(x+1)(x-1)}=\bruch{A}{x^2}+\bruch{B}{x+1}+\bruch{C}{x-1}=\bruch{x^3(B+C)+x^2(A-B+C)-A}{x^2(x+1)(x-1)}[/mm]


Der Ansatz muss hier doch lauten:

[mm]\bruch{x^2+1}{x^4-x^2}=\bruch{x^2+1}{x^2(x+1)(x-1)}=\red{\bruch{A_{1}}{x}}+\bruch{A_{2}}{x^2}+\bruch{B}{x+1}+\bruch{C}{x-1}[/mm]


>  [mm]\rightarrow B+C=0, a-B+C=1, -A=1[/mm]
>  [mm]\rightarrow A=-1, B=-1, C=1[/mm]
>  
> Somit:
>  
> [mm]\bruch{x^2+1}{x^4-x^2}=\bruch{-1}{x^2}+\bruch{-1}{x+1}+\bruch{1}{x-1}[/mm]
>  Also:
>  [mm]\integral \bruch{-1}{x^2}+\bruch{-1}{x+1}+\bruch{1}{x-1}dx = \bruch{1}{x}-ln|x+1|+ln|x-1|+C[/mm]


[ok]


>  
> Woher weiß ich hier jedoch wie viele Variablen A,B,C ,..
> ich brauche?
>  habe es nämlich erst falsch gemacht. Hängt das mit den
> Nullstellen zusammen?


Das richtet sich nach den Nullstellen im Nenner und deren Vielfachheit.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de