www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - Standardabweichung
Standardabweichung < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Standardabweichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 Sa 13.02.2010
Autor: ragazzo

Hallo,

ich möchte von euch bitte ein Feedback, ob mein Gedankengang richtig ist.

Ich habe je 3 Messreihen mit je 100 Messwerten von 2 unterschiedlichen Verfahren gemacht.
Ziel ist es, die 2 Verfahren miteinander zu vergleichen und zu bewerten, welches von beiden das "Genaueste" ist.

Dabei würde ich die Standardabweichung jeder Messreihe berechnen und anschliessend den Mittelwert der Standardabweichung für jedes Verfahren. Am Ende hätte ich also je eine Standardabweichung für beide Verfahren. Die kleinste Standardabweichung würde dann das "Genaueste" Verfahren definieren. Ist das richtig?

Hoffe, ich habe es deutlich genug erklären können :)

Gruß
ragazzo

        
Bezug
Standardabweichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 Sa 13.02.2010
Autor: Event_Horizon

Hallo!

Es kommt darauf an, was du mit Genauigkeit meinst.

Auf diese Weise kannst du sicher eine Aussage über die Wiederholgenauigkeit machen, aber natürlich noch nicht über die absolute Genauigkeit, also darüber, ob etwas tatsächlich 1m lang ist, wenn du im Mittel 1m misst.

Weiterhin muß natürlich noch drauf geachtet werden, ob die Größe, die du mißt, vielleicht selber irgendwelchen Schwankungen unterliegt. Wenn die Energie der Gammastrahlung eines Präparats von Natur aus recht stark um den Mittelwert streut, wird irgendwann auch ein theoretisch besserer Detektor keine kleinere Standardabweichung als ein schlechterer Detektor liefern.

Bezug
                
Bezug
Standardabweichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 Sa 13.02.2010
Autor: ragazzo

Hallo Event_Horizon,

Danke erst mal für dein Feedback!

Über die absolute Genauigkeit kann ich ja überhaupt keine Aussage machen. Da ich aber über die Standardabweichung das "genauere" von beiden Verfahren ermitteln kann, kann ich mit Sicherheit sagen, dass die ermittelten Werte des "genauere" Verfahrens der absoluten Größe (dem sog. Nennmaß) am nähesten kommt.

Ich weiß nicht genau, was du unter absolute Genauigkeit meinst und wie man diese eventuell bestimmen kann.

Ein zweites Feedback von dir wäre sicher interessant...

Gruß
ragazzo

Bezug
                        
Bezug
Standardabweichung: Anwendbar
Status: (Antwort) fertig Status 
Datum: 10:22 So 14.02.2010
Autor: Infinit

Hallo ragazzo,
unter der Voraussetzung, dass Du nichts über den "wahren Wert" weisst, ist Deine Definition sicher anwendbar. Die Nebenbedingungen, die Event_Horizon noch erwähnte, beeinflussen die Messgenauigkeit, solange darüber aber nichts bekannt ist, kannst Du deren Kenngrößen auch in kein Statistikmodell einfließen lassen.
Viele Grüße,
Infinit

Bezug
                                
Bezug
Standardabweichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:41 So 14.02.2010
Autor: ragazzo

Hallo,

ok! Danke!

Da ich den "wahren" Wert  [mm]x_w [/mm] nicht kenne, ist es auch unmöglich die normierte Gaußfunktion [mm]f(x)=\bruch{1}{\wurzel{2\pi\sigma^2}}e^{-(x-x_w)^2/2\sigma^2}[/mm] mit meinen berechneten Werten für die Standardabweichungen exakt zu zeichnen.

Näherungsweise könnte ich für [mm]x_w [/mm] den Mittelwert  [mm]\overline{x} [/mm] nehmen. Darf ich das bei nur 100 Messwerten bereits machen bzw. ab welchem Wert der Standardabweichungen darf ich den Mittelwert bei 100 Messwerten nehmen? Oder gibts es dazu gar keine Regel?

Gruß
ragazzo

Bezug
                                        
Bezug
Standardabweichung: Hypothesen
Status: (Antwort) fertig Status 
Datum: 11:56 So 14.02.2010
Autor: Infinit

Hallo Ragazzo,
es gibt zu diesem Gebiet der Statistik verschiedene Testmöglichkeiten. Da man jedoch nie mit 100-prozentiger Wahrscheinlichkeit eine Aussage treffen kann, gibt man bei der Auswertung dieser Tests sich ein Vertrauensintervall vor. Stichwort ist hier die Studentsche t-Verteilung. Man testet die Hypothese, ob der Erwartungswert [mm] \mu [/mm] der Normalverteilung einer vorgegebenen Zahl [mm] \mu_0 [/mm] ist. In Abhängigkeit vom Vertrauensintervall stimmt man dann dieser Hypothese zu oder eben auch nicht.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de