www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Standardabweichung bei der Kör
Standardabweichung bei der Kör < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Standardabweichung bei der Kör: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:10 Mi 07.08.2013
Autor: Manix

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich bin ein völliger mathematischer Laie und habe eine Aufgabenstellung, mit der ich mich nun schon geraume Zeit ergebnislos beschäftige. Hier ist sie:

Wenn die durchschnittliche Körpergröße der weiblichen Bevölkerung 1,65 m ist, wie groß ist man, wenn die Standardabweichung - 2 Sigma, - 3 Sigma oder - 4 Sigma beträgt?

Ich habe schon keine Ahnung, was ich mir unter "Sigma" vorstellen soll. Die Erklärungen, die ich im Netz dazu finde, sind mir "zu hoch". Wenn mir die Rechnung jemand erklären könnte, wäre das schön, ich wäre aber auch schon für die blanken Ergebnisse dankbar.

Danke,

Manix



        
Bezug
Standardabweichung bei der Kör: Antwort
Status: (Antwort) fertig Status 
Datum: 09:06 Mi 07.08.2013
Autor: Infinit

Hallo Manix,
solange Du uns nicht sagst, wie groß das Sigma ist, wird man hier nur symbolisch weiterrechnen können.
Die Antwort ist dann ganz einfach:
1,65 ,m - 2 Sigma#bzw. 1,65 m - 3 Sigma, oder auch 1,65 m - 4 Sigma.
Viele Grüße,
Infinit

Bezug
                
Bezug
Standardabweichung bei der Kör: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:14 Mi 07.08.2013
Autor: fred97


> Hallo Manix,
>  solange Du uns nicht sagst, wie groß das Sigma ist, wird
> man hier nur symbolisch weiterrechnen können.
>  Die Antwort ist dann ganz einfach:
>  1,65 ,m - 2 Sigma#bzw. 1,65 m - 3 Sigma, oder auch 1,65 m
> - 4 Sigma.
>  Viele Grüße,
>  Infinit

Hallo Infinit,

Du meinst wohl

       $1,65m [mm] \pm [/mm] 2 [mm] \sigma$ [/mm]  bzw.  $1,65m [mm] \pm [/mm] 3 [mm] \sigma$ [/mm] bzw.  $1,65m [mm] \pm [/mm] 4 [mm] \sigma$ [/mm]

FRED


Bezug
                        
Bezug
Standardabweichung bei der Kör: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Mi 07.08.2013
Autor: Infinit

Hallo Fred,
nein, das meinte ich nicht, denn Manix sprach nur von der negativen Abweichung. So wie die Aufgabe beschrieben ist, hat sie nichts mehr mit Stochastik, sondern mit reiner Arithmetik zu tun.
Viele Grüße,
Infinit

Bezug
                                
Bezug
Standardabweichung bei der Kör: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:24 Mi 07.08.2013
Autor: Manix

Stimmt, es geht mir vor allem um die Negativabweichung. Ich hoffe, mir kann jemand helfen...

Bezug
        
Bezug
Standardabweichung bei der Kör: Antwort
Status: (Antwort) fertig Status 
Datum: 09:23 Mi 07.08.2013
Autor: abakus


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> Ich bin ein völliger mathematischer Laie und habe eine
> Aufgabenstellung, mit der ich mich nun schon geraume Zeit
> ergebnislos beschäftige. Hier ist sie:

>

> Wenn die durchschnittliche Körpergröße der weiblichen
> Bevölkerung 1,65 m ist, wie groß ist man, wenn die
> Standardabweichung - 2 Sigma, - 3 Sigma oder - 4 Sigma
> beträgt?

Hallo,
hier geht etwas durcheinander.
Die Standardabweichung selbst wird mit "sigma" gezeichnet. Sie kann damit nicht 2*sigma, 3*sigma oder Ähnliches sein.
Die Frage lautet sicherlich:
"Wie groß ist man, wenn die ABWEICHUNG (von der durchschnittlichen Größe 1,65 m) -2 sigma beträgt."
Um das zu beantworten, muss man sigma kennen.
Gruß Abakus

>

> Ich habe schon keine Ahnung, was ich mir unter "Sigma"
> vorstellen soll. Die Erklärungen, die ich im Netz dazu
> finde, sind mir "zu hoch". Wenn mir die Rechnung jemand
> erklären könnte, wäre das schön, ich wäre aber auch
> schon für die blanken Ergebnisse dankbar.

>

> Danke,

>

> Manix

>
>

Bezug
                
Bezug
Standardabweichung bei der Kör: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:04 Mi 07.08.2013
Autor: Manix

Vielen Dank für die Nachfragen. Ich denke, die angegebene Standardabweichung ist 6,39 cm.

Bezug
        
Bezug
Standardabweichung bei der Kör: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Mi 07.08.2013
Autor: Infinit

Hallo Manix,
die Standardabweichung Sigma ist eine Größe aus der Stochastik, bei der man aus mehreren Messungen einen Mittelwert bestimmt, das sind die 1,65 m bei Dir,  und eine charakteristische Größe für die Abweichung anderer Messwerte von diesem Mittelwert, die sogenannte Standardabweichung. Sie gibt die Streuung der weiteren Werte vom Mittelwert an. Bei einer Normalverteilung, und davon kann man wohl ausgehen, liegen 68,3% aller weiteren Werte um diesen Mittelwert herum in einer Breite von 2 Sigma. Es gibt nicht mehrere Standardabweichungen, wie von Dir geschrieben, sondern nur eine. Falls Du also nach der Größe von Personen suchst, die zwei Sigma, drei Sigma oder vier Sigma kleiner sind als der Mittelwert, so ziehe einfach von den 1,65 m 12,78 cm bzw. 19,17 cm oder 25,56 cm ab und Du hast die Lösungen.
Viele Grüße,
Infinit

Bezug
                
Bezug
Standardabweichung bei der Kör: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 Mi 07.08.2013
Autor: Manix

Hallo Infinit,

so einfach ist das? Vielen Dank für die Antwort. Hab´ ich lange daran ´rumgetüftelt. wie genau berechnet man denn dann den Standardwert, also wie kommen die 6,39 cm zustande?

Viele Grüße

Manix

Bezug
                        
Bezug
Standardabweichung bei der Kör: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Mi 07.08.2013
Autor: abakus


> Hallo Infinit,

>

> so einfach ist das? Vielen Dank für die Antwort. Hab´ ich
> lange daran ´rumgetüftelt. wie genau berechnet man denn
> dann den Standardwert, also wie kommen die 6,39 cm
> zustande?

Woher sollen wir das wissen? Du hast diese Angabe plötzlich aus dem Hut gezaubert. Woher stammt diese Angabe?
Das beste ist, du postest die komplette Aufgabenstellung.
Gruß Abakus


>

> Viele Grüße

>

> Manix

Bezug
                                
Bezug
Standardabweichung bei der Kör: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:43 Do 08.08.2013
Autor: Manix

Hallo abakus,

es ist eine Aufgabenstellung aus dem "praktischen Leben". Leider habe ich selbst nicht mehr Angaben als die, die ich eingestellt habe. In meiner naiven völlig laienhaften Vorstellung dachte ich, dass diese Angaben reichen. Zumindest weiß ich aber jetzt, wie sich die einzelnen Sigma-Stufen ergeben. Dafür herzlichen Dank, das hilft mir schon weiter.

Viele Grüße

Manix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de