www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Standardisierungsformel
Standardisierungsformel < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Standardisierungsformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 Sa 21.06.2008
Autor: JPC

Aufgabe
Die Verkaufspreise für Häuser in einem bestimmten Gebiet können als eine normalverteilte Zufallsvariable angesehen werden mit einer Standardabweichung von 60000€.Es wird eine Zufallsauswahl von 25 zum Verkauf angebotenen Häusern vorgenommen.
Wie groß ist die Wahrscheinlichkeit dafür, dass das Intervall [(xquer-23520)€, (xquer+23520)€]den Erwartungswert der Grundgesamtheit überdeckt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
vorweg erstmal: xquer soll das x mit dem Strich drauf sein.
Wir haben diese Aufgabe in der Uni im Fach Statistik bearbeitet und haben auch einen Lösungsweg erhalten, der folgendermaßen aussieht:

Es gilt: x [mm] \sim N(\mu,60000^2) [/mm] und xquer [mm] \sim N(\mu,(60000^2)/25=12000) [/mm]
P(xquer-23520 [mm] \le \mu \le [/mm] xquer+23520)    |standardisieren
P((-23520/12000) [mm] \le ((xquer-\mu)/12000) \le [/mm] (23520/12000))
= Phi(1,96)-Phi(-1,96) = 0,95

Meine Frage ist jetzt, was genau beim Standardisieren gemacht wurde? Das die Normalverteilung in eine Standardnormalverteilung umgewandelt wurde, ist mir klar. Ich weiß nur nicht, was genau gerechnet wurde, also wie man von dem ersten P(...) auf das zweite P(...) kommt.
Kann mir das jemand erklären?
Vielen Dank im Voraus.
J

        
Bezug
Standardisierungsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Sa 21.06.2008
Autor: Somebody


> Die Verkaufspreise für Häuser in einem bestimmten Gebiet
> können als eine normalverteilte Zufallsvariable angesehen
> werden mit einer Standardabweichung von 60000€.Es wird eine
> Zufallsauswahl von 25 zum Verkauf angebotenen Häusern
> vorgenommen.
> Wie groß ist die Wahrscheinlichkeit dafür, dass das
> Intervall [(xquer-23520)€, (xquer+23520)€]den
> Erwartungswert der Grundgesamtheit überdeckt?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> Hallo,
>  vorweg erstmal: xquer soll das x mit dem Strich drauf
> sein.
>  Wir haben diese Aufgabe in der Uni im Fach Statistik
> bearbeitet und haben auch einen Lösungsweg erhalten, der
> folgendermaßen aussieht:
>  
> Es gilt: x [mm]\sim N(\mu,60000^2)[/mm] und xquer [mm]\sim N(\mu,(60000^2)/25=12000)[/mm]
>  
> P(xquer-23520 [mm]\le \mu \le[/mm] xquer+23520)    |standardisieren
>  P((-23520/12000) [mm]\le ((xquer-\mu)/12000) \le[/mm]
> (23520/12000))
>  = Phi(1,96)-Phi(-1,96) = 0,95
>  
> Meine Frage ist jetzt, was genau beim Standardisieren
> gemacht wurde? Das die Normalverteilung in eine
> Standardnormalverteilung umgewandelt wurde, ist mir klar.
> Ich weiß nur nicht, was genau gerechnet wurde, also wie man
> von dem ersten P(...) auf das zweite P(...) kommt.
>  Kann mir das jemand erklären?

Es handelt sich lediglich um die äquivalente Umformung der Ungleichungen, die im ersten P(...) enthalten sind. So erhält man zum Beispiel aus [mm] $\overline{x}-23520 \le \mu [/mm] $ durch beidseitiges Subtrahieren von [mm] $\mu$, [/mm] Addieren von $23520$ und anschliessendem Dividieren durch $12000$, die Ungleichung [mm] $(\overline{x}-\mu)/12000\leq [/mm] 23520/12000$. Entsprechend mit der zweiten Ungleichung, die im Argument des ersten P(...) enthalten ist.
Kurz: Die beiden Ungleichungen im Argument der beiden P(...) sind aus rein algebraischen Gründen äquivalent.

Bezug
                
Bezug
Standardisierungsformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:46 Sa 21.06.2008
Autor: JPC

Das macht Sinn! Danke für die schnelle Antwort.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de