www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Stationäre Verteilung, Markov
Stationäre Verteilung, Markov < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stationäre Verteilung, Markov: Korrektur meiner Überlegung
Status: (Frage) beantwortet Status 
Datum: 12:14 Di 18.12.2007
Autor: sonius

Aufgabe
Es ist nach der Euro Münzen Verteilung zwischen Deutschland, Frankreich und sonstigen Länder gefragt.

Übergangsmatrix:
A = [mm] \pmat{ 0,88 & 0,06 &0,15 \\ 0,06 & 0,9 &0,05 \\ 0,06 & 0,04 &0,8} [/mm]

Untersuchen sie, ob es eine Stationäre Verteilung der Münzen auf die 3 Gebiete gibt, und geben Sie diese ggfs. an.


Hallo,

meine Frage ist nun ganz banal, wie kann ich das Berechen?

Leider habe ich mit Matrizen recht lange nicht mehr gerechnet, so das mir die Weiterführung des Ansatzes, vielleicht aber auch noch mehr, fehlt.

Nun zur Aufgabe:
Es ist ja nach dem Fixvektor gefragt, also nach einem Vektor, welcher multipliziert mit dem Übergangsvektor, sich selbst ergibt: [mm] \vec{A}*x=x [/mm]

Spontaner, erster Gedanke: A = 1
Was mir aber nicht Helfen dürfte.

Also wieder der Ursprüngliche Ansatz:
[mm] \pmat{ 0,88 & 0,06 &0,15 \\ 0,06 & 0,9 &0,05 \\ 0,06 & 0,04 &0,8} [/mm] * [mm] \pmat{ a \\ b \\ c} =\pmat{ a \\ b \\ c} [/mm]

Das dann als Gleichung:
0.88a+0.06b+0.15c=a
0.06a+0.90b+0.05c=b
0.06a+0.04b+0.80c=c

Und weiter komme ich nicht, wenn ich nun versuche das ganze zu lösen, habe ich immer so nette sachen wie 0.56b=0.1b oder vergleichbare Sachen.
Ich denke, dass der Fehler beim [mm] \pmat{ a \\ b \\ c} [/mm]  liegt, aber wie geht es richtig?

Ich hoffe man kann mir Helfen.

Grüße
Sonius


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Stationäre Verteilung, Markov: Eigenvektor
Status: (Antwort) fertig Status 
Datum: 12:50 Di 18.12.2007
Autor: kochmn

Grüß Dich, Sonius,

was Du suchst ist ein Eigenvektor zum Eigenwert 1.
Bei einer Übergangsmatrix wie der von Dir vorgegebenen
gibt es einen Satz der besagt, dass mindestens ein
eindimensionaler Eigenraum dieser Art vorhanden ist.

Aber zu der von Dir erfragten Weiterführung des Ansatzes:
Sei A die von Dir eingegebene Matrix und [mm] v=(a,b,c)^\top. [/mm]

Wie Du schon richtig schreibst suchst Du ein v mit
[mm]Av=v[/mm], wobei noch a+b+c=1 gefordert werden sollte.

Sei E die diagonale Einheitsmatrix. Dann kannst Du doch
auch schreiben...

[mm]Av=Ev[/mm]
[mm]Av-Ev=0[/mm]
[mm](A-E)v=0[/mm]

Damit hast Du Dein Eigenwertproblem auf ein einfaches LGS
reduziert, dessen Lösung mindestens einen eindimensionalen
Raum umfasst.

Liebe Grüße,
  Markus.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de