www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Stationäres Glecihgewicht
Stationäres Glecihgewicht < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stationäres Glecihgewicht: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 14:54 Fr 09.12.2005
Autor: Hans23

Hi,
ich schreibe gerade (immer noch) meine Arbeit über ein Finanzmarktthema. An einem Punkt geht es um ein stationäres Gleichgewicht. Die Autoren des der Arbiet zugrundeliegenden Textes betrachten ausschließlich stationäre Gleichgewichte, indem sie die Bedingung einführen, dass der unbedingte Erwartungswert (bzw. Varinaz, die Verteilung eben) des Preises eines Assets in Periode t+1 dem konditionalen Erwartungswert dieses Assets in t entspricht. Warum ist das so? Ich denke zu wissen, dass stationöres Gleichgewicht bedeutet, dass sich alle wirtschaftlichen Aktivitäten jede Periode unverändert wiederholen und alle Variablen deshalb im Zeitablauf eine Veränderungsrate von Null aufweisen. Wie kann ich aber daraus auf die Gleichheit des bedingten und unbedingten Erwartungswertes -wie oben geschildert- schließen?? Für Hilfe wäre ich sehr dankbar

Gruß

Hans

        
Bezug
Stationäres Glecihgewicht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:58 Fr 09.12.2005
Autor: Hans23

Sorry, hab ich vergessen:

Die Autoren reden von einem "steady state equilibrium", was ich in obigem Artikel mit "stationäres Gleichgewicht" übersetzt habe. Ich hoffe, dass die Übersetzung stimmt. Falls nicht, bitte ich, wenn möglich, um Aufklärung, was steady state equilibrium bedeutet

Nochmals Danke

Bezug
        
Bezug
Stationäres Glecihgewicht: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:19 Do 15.12.2005
Autor: matux

Hallo Hans!


Leider konnte Dir keiner hier mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
                
Bezug
Stationäres Glecihgewicht: Frage immer noch offen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:28 Fr 16.12.2005
Autor: Hans23

Hi,

auch wenn die Zeit abgelaufen ist, bin ich immer noch an einer Antwort interessiert. Wäre also cool, wenn ihr euch von der abgelaufenen Zeit nicht abschrecken lasst. Danke

MfG

Hans23

Bezug
        
Bezug
Stationäres Glecihgewicht: wikipedia
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Fr 16.12.2005
Autor: blajoe

hi
1. ich hab nur halbwissen
2. en.wikipedia.org mit Dynamic equilibrium und Mechanical equilibrium,  vllt noch Steady state theory als bonus

dauraus folgere ich:
die verhältnis der wachtstumsfaktoren der einzelnen variablen untereinander is halbwegs konstant.
vllt würde es mehr sinn machen, wenn du dein thema verrätst und ob da vllt rumgezinst wird.


Bezug
                
Bezug
Stationäres Glecihgewicht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:28 Sa 17.12.2005
Autor: Hans23

Hi blajoe,

danke für deinen Hinnweis, leider werde ich aus deinem posting nicht schlau. Was bedeutet den "vllt"? Etwa "vielleicht" Sorry, keine Ahnung. Ich verstehe leider immer noch nicht, warum ein stationäres Gleichgewicht impliziert, dass der konditionale Erwartungswert des Preises (Zufallsvariable) der Periode t gleich dem unkonditionalen Erwartungswert des Preises der Periode t+1 ist. Vielleicht kannst du mir ja weiterhelfen.

Hans

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de