www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Statistik - Standardabweichung
Statistik - Standardabweichung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Statistik - Standardabweichung: Statistisches Problem
Status: (Frage) beantwortet Status 
Datum: 09:23 Do 28.05.2015
Autor: Tobi1988Ac

Aufgabe
Berechnung einer Motorkonstruktion und sich ergebende Standardabweichung aus einer Toleranzkette.

Guten Morgen zusammen,

da ich leider mit Statistik nicht so konform bin, jedoch eine Aufgabe zu lösen habe, wende ich mich an euch Spezialisten :-)

Ich habe eine (Motor-)Konstruktion aus diversen Bauteilen, die zwei Maßketten bilden.
Es geht um das Verdichtungsverhältnis eines Motors.

Dieses berechnet sich nach der Formel: e = 1 + Vh/Vc

Vh ist das Hubvolumen
Vc ist das Kompressionsvolumen

Diese beiden Volumina ergeben sich durch die Bauteile des Motors. Zum Beispiel dem Kolbendurchmesser und dem Hub (haben also zum Teil von den gleichen Bauteilen abhängig). Da sie "mechanisch gefertigt werden", unterliegen sie einer (symmetrischen) Toleranz. Die Annahme, dass die Bauteile "normalverteilt" gefertigt werden ist gestattet.

Jetzt habe ich mir die "worst case"-Szenarien errechnet um das theretisch kleinste und größte Verdichtungsverhältnis (e) zu errechnen. Aber das ist ja real unrealistisch, dass alle Teile am unteren/oberen Abmaß sind. Kann mir jemand auf die Sprünge helfen, wie ich die statistische Abweichung des "e" aus den einzelnen Standardabweichungen errechnen kann?

Über Hilfe freue ich mich :-)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Statistik - Standardabweichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Do 28.05.2015
Autor: Event_Horizon

Hallo!

Naja, je nachdem ist der worst-case auch interessant, wobei man erstmal wissen müßte, woher du worst-case Werte für die Volumen bekommst, wenn die doch auch normalverteilt sind... Aber vermutlich gibts da harte Grenzen, ab denen ein Bauteil aussortiert wird.

Wenn die einzelnen Größen zufallsverteilt sind, benutzt man etwas, das ich aus der Physik als gaußsche Fehlerfortpflanzung kenne. Mir fällt grade auf, daß ich keinen allgemeineren Begriff kenne, bei uns sind Toleranzen eben auch Fehler. Das Prinzip ist einfach: Den Ausdruck nach einer der Variablen ableiten, mit der Abweichung dieser Variablen multiplizieren, das ganze quadrieren. Das macht man für jede Variable, addiert die Ergebnisse, und zieht danach nochmal die Wurzel:

[mm] $\Delta e=\sqrt{\left(\frac{\partial e}{\partial V_h}*\Delta V_h\right)^2+\left(\frac{\partial e}{\partial V_C}*\Delta V_C\right)^2}$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de