www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Std.-abweichung Durchschnitt
Std.-abweichung Durchschnitt < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Std.-abweichung Durchschnitt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:49 So 30.11.2014
Autor: Helveticus

Hallo

Ich habe eine Menge aus 1000 Zahlen von welcher ich den Durchscnitt A bilde, die standard deviation stdA und das 95% Konfidenzinterval.

Nun habe ich auch noch eine zweite Menge mit 1000 Zahlen von welcher ich den Durchschnitt B, die standard deviation stdB und das 95% Konfidenzinterval bilde.

Wenn ich nun von A und B den Durchscnitt nehme (Durchschnitt beider Durchschnitte), kann ich dann für die standard deviation einfach den Durchschnitt von stdA und stdB (Durchscnitt der standard deviations) und für das Konfidenzinterval den Durchscnitt der Konfidenzintervalle nehmen?

        
Bezug
Std.-abweichung Durchschnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 08:49 So 30.11.2014
Autor: Al-Chwarizmi

Guten Tag Helveticus


> Ich habe eine Menge aus 1000 Zahlen von welcher ich den
> Durchscnitt A bilde, die standard deviation stdA und das
> 95% Konfidenzintervall.
>  
> Nun habe ich auch noch eine zweite Menge mit 1000 Zahlen
> von welcher ich den Durchschnitt B, die standard deviation
> stdB und das 95% Konfidenzinterval bilde.
>  
> Wenn ich nun von A und B den Durchscnitt nehme
> (Durchschnitt beider Durchschnitte), kann ich dann für die
> standard deviation einfach den Durchschnitt von stdA und
> stdB (Durchscnitt der standard deviations) und für das
> Konfidenzinterval den Durchscnitt der Konfidenzintervalle
> nehmen?


Dass die beiden Teilmengen aus je gleich vielen (n=1000)
Elementen bestehen, erlaubt zwar für den Mittelwert
(Durchschnitt) die einfache Berechnung als arithmetisches
Mittel. Für die Standardabweichung [mm] \sigma [/mm] klappt dies
aber nicht. Auch wenn z.B.  [mm] $\mu_A [/mm] = [mm] \mu_B$ [/mm]  und  [mm] $\sigma_A [/mm] = [mm] \sigma_B$ [/mm]  ist,
ergibt sich  zwar  [mm] $\mu_{gesamt}\ [/mm] =\ [mm] \mu_A [/mm] = [mm] \mu_B$ [/mm] , aber [mm] $\sigma_{gesamt}\ [/mm] =\ [mm] \sqrt{2}*\sigma_A$ [/mm]
Noch ein Beispiel: Angenommen es sei [mm] $\sigma_A [/mm] = [mm] \sigma_B\ [/mm] =\ 0$
aber [mm] $\mu_A \ne \mu_B$ [/mm] . Dann kannst du den Wert von  [mm] $\sigma_{gesamt}$ [/mm]
beliebig groß machen, wenn du nur die Differenz  $\ [mm] |\mu_A [/mm] - [mm] \mu_B [/mm] |$
genügend groß machst. Das Beispiel zeigt: man kann  [mm] $\sigma_{gesamt}$ [/mm]
gar nicht aus  [mm] $\sigma_A$ [/mm] und [mm] $\sigma_A$ [/mm]  allein berechnen,
sondern man braucht dazu auch Kenntnis über die Mittelwerte
[mm] $\mu_A$ [/mm]  und  [mm] $\mu_B$ [/mm]  !

Du kannst z.B. einmal da nachschauen:
http://de.wikipedia.org/wiki/Varianz_(Stochastik)#Varianz_von_Summen_von_Zufallsvariablen

Beim Thema Konfidenzintervalle scheinst du zwei
ganz unterschiedliche Bedeutungen des Ausdrucks
"Durchschnitt" durcheinander zu bringen. Ein Durchschnitt
(Schnittmenge) von Intervallen hat nun wirklich nichts
zu tun mit dem Durchschnitt (arithmetisches Mittel)
von Zahlenwerten ...

LG ,   Al-Chwarizmi

Bezug
                
Bezug
Std.-abweichung Durchschnitt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 So 30.11.2014
Autor: Helveticus

Hi

Vielen Dank für die Antwort.

Muss ich also alle 2000 Werte in ein Array stecken und dann von diesem Array die Standardabweichung und Durchschnitt berechnen?

Bezug
                        
Bezug
Std.-abweichung Durchschnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 So 30.11.2014
Autor: hanspeter.schmid

Genau so, allerdings ist die Berechnung eines Konfidenzintervalls nachher nur dann korrekt, wenn im Vorneherein klar ist, dass beide Zahlenreihen aus normalverteilten Zufallsprozessen kommen, und wenn [mm] $\mu_A=\mu_B$ [/mm] und [mm] $\sigma_A=\sigma_B$ [/mm] im Vorneherein gegeben ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de