www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Steckbriefaufgabe
Steckbriefaufgabe < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steckbriefaufgabe: Ansatz fehlt
Status: (Frage) beantwortet Status 
Datum: 13:44 So 12.03.2006
Autor: HeinBloed

Aufgabe
Eine Parabel 3.Grades f hat dieselben Schnittpunkte mit den Achsen wie g(x)= -x³ + 4x. Der Graph von f schneidet den Graph von g im Ursprung orthogonal. Bestimmen sie den Funktionsterm von f.  

also:

f(x) = ax³ + bx² + cx +d

die Nullstelle von g(x) ist NS(0;0).
d.h. f(x) hat auch die NS(0;0)
und wenn ich das einsetze kommt raus d=0

so und jetzt weiß ich nicht weiter...
es wäre nett, wenn mir jemand auf die Sprünge helfen könnte
Liebe Grüße
Hein Blöd


        
Bezug
Steckbriefaufgabe: Tipps
Status: (Antwort) fertig Status 
Datum: 14:02 So 12.03.2006
Autor: Loddar

Hallo HeinBloed!


Welche Nullstellen hat denn die Funktion $g(x) \ = \ [mm] -x^3+4x [/mm] \ = \ [mm] -x*\left(x^2-4\right) [/mm] \ = \ -x*(x+2)*(x-2)$ noch?


Und für den Ursprung muss gelten, damit sich die Kurven dort senkrecht schneiden:

$f'(0)*g'(0) \ = \ -1$


Gruß
Loddar


Bezug
                
Bezug
Steckbriefaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 So 12.03.2006
Autor: HeinBloed

ähm also als weitere Nullstellen habe ich (2;0) und (-2;0)
> Welche Nullstellen hat denn die Funktion [mm]g(x) \ = \ -x^3+4x \ = \ -x*\left(x^2-4\right) \ = \ -x*(x+2)*(x-2)[/mm]
> noch?

als weitere Nullstellen habe ich (2;0) und (-2;0)

> Und für den Ursprung muss gelten, damit sich die Kurven
> dort senkrecht schneiden:
>  
> [mm]f'(0)*g'(0) \ = \ -1[/mm]

das wusste ich nicht. Ich verstehe auch nicht, was mir das hilft.

Und ich weiß auch nicht, was ich jetzt mit diesen Informationen machen soll?

Liebe Grüße
HeinBloed

Bezug
                        
Bezug
Steckbriefaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 So 12.03.2006
Autor: bjochen

Wie du schon richtig geschrieben hast ist die Formel für eine Funktion 3. Grades:
f(x) = [mm] ax^3 +bx^2 [/mm] + cx + d

4 Unbekannte hast du, also brauchst du 4 Bedingungen um das spätere gleichungssystem zu lösen.

g(x) hat 3 Nullstellen x1, x2 und x3 und f(x) soll die gleichen haben.

Also gilt:
f(x1) = 0
f(x2) = 0
f(x3) = 0

Fehlt noch eine Bedingung undzwar die letzte.

Die hat Loddar schon genannt.

also:

f'(x) * g'(x) = -1

Somit hast du 4 gleichungen mit jeweils 4 Variablen, sodass du für jede Variable einen Wert rausbekommen müsstest die dann die Funktion f(x) beschreiben...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de