www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Steckbriefaufgabe
Steckbriefaufgabe < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steckbriefaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Di 25.09.2007
Autor: risette

Aufgabe
Bestimme auf dem Schaubild der Funktion f(x) = x [mm] \wurzel{x} [/mm] den Punkt P (u|v) mit u<4, für den das Dreieck mit den Ecken P1 (u|0), P2 (4|0) und P (u|v) den maximalen Flächeninhalt hat. Gebe den Flächeninhalt an.

Hallo,
das ist meine Matheaufgabe. Unser Lehrer meinte noch, dass sie nicht so schwer sei, aber ich komme nicht weiter. Ich denke, dass ich irgendwie ein Gleichungssystem aufstellen muss, um dann per Additionsverfahren an u und v ranzukommen, aber mir fällt es schwer, Bedienungen dafür zu finden. Wie verwerte ich z.B. die Information, dass u kleiner als 4 sein muss?
Ich dachte mir schon, dass ich den Punkt P in f(x) einsetzen muss, weil der Punkt ja auf dieser Funktion liegt, nur wie gehts dann weiter?

Bin dankbar für jede Hilfe!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Steckbriefaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Di 25.09.2007
Autor: Blech


> Bestimme auf dem Schaubild der Funktion f(x) = x [mm]\wurzel{x}[/mm]
> den Punkt P (u|v) mit u<4, für den das Dreieck mit den
> Ecken P1 (u|0), P2 (4|0) und P (u|v) den maximalen
> Flächeninhalt hat. Gebe den Flächeninhalt an.
>  Hallo,
>  das ist meine Matheaufgabe. Unser Lehrer meinte noch, dass
> sie nicht so schwer sei, aber ich komme nicht weiter. Ich
> denke, dass ich irgendwie ein Gleichungssystem aufstellen
> muss, um dann per Additionsverfahren an u und v
> ranzukommen, aber mir fällt es schwer, Bedienungen dafür zu
> finden. Wie verwerte ich z.B. die Information, dass u
> kleiner als 4 sein muss?
> Ich dachte mir schon, dass ich den Punkt P in f(x)
> einsetzen muss,

Richtig, [mm]v=u\sqrt{u}[/mm]

> weil der Punkt ja auf dieser Funktion
> liegt, nur wie gehts dann weiter?

Was willst Du denn machen? Die Dreiecksfläche maximieren.
Also brauchst Du den Flächeninhalt des Dreiecks in Abhängigkeit von u:

[mm]A(u)=\frac{1}{2}g(u)h(u)[/mm]

Was bietet sich nun als Grundlinie an, und was als Höhe?

Dann kannst Du A(u) ableiten, damit das Maximum bestimmen und erhältst damit Dein u, woraus dann auch P folgt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de