www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Steigung eines Graphen
Steigung eines Graphen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steigung eines Graphen: Frage
Status: (Frage) beantwortet Status 
Datum: 13:20 Di 28.12.2004
Autor: Rick

Hallo zusammen!

Ich habe folgende Funktion gegeben: x²-4/x²+1 (also gebrochen rational).

Nun soll ich bestimmen, an welcher Stelle diese Funktion maximale und minimale Steigung hat...

Weiß jemand Rat?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Steigung eines Graphen: 1. Schritte
Status: (Antwort) fertig Status 
Datum: 13:49 Di 28.12.2004
Autor: Loddar

Hallo Rick,

[willkommenmr] !!!


> Ich habe folgende Funktion gegeben: x²-4/x²+1 (also
> gebrochen rational).

Du meinst sicher: $f(x) = [mm] \bruch{x^2-4}{x^2+1}$ [/mm]

> Nun soll ich bestimmen, an welcher Stelle diese Funktion
> maximale und minimale Steigung hat...

Es handelt es sich hier doch um die Ermittlung von Extremstellen.
Weißt Du, wie solche berechnet werden?

Das besondere an dieser Aufgabe ist, daß nicht die Extremwerte der Ursprungsfunktion f(x) gesucht sind, sondern der Steigungsfunktion.

Die Steigungsfunktion entspricht ja nun genau der 1. Ableitung f'(x).
Diese 1. Ableitung (und weitere Ableitungen) müssen nun über die MBQuotientenregel bestimmt werden.

Von dieser Funktion f'(x) müssen nun die Extremwerte (Maxima und Minima) ermittelt werden.

Kommst du nun alleine weiter?
Sonst schreib' doch einfach, wie weit Du gekommen bist und wo Du genau hängen geblieben bist ...

Kontrollergebnis (bitte selber nachrechnen!): [mm] $x_{E1,2} [/mm] = [mm] \pm \bruch{1}{\wurzel{3}}$ [/mm]


Grüße
Loddar


Bezug
        
Bezug
Steigung eines Graphen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Di 28.12.2004
Autor: Rick

Achso, bei gebrochen rationalen Funktionen liegen die extremen Steigungen also bei den Wendestellen?

Denn nachdem ich die 2. Ableitung (also die Ableitung der Steigerungsfunktion) gebildet habe und =0 setzte, kam ich ebenfalls auf + bzw. - 1/Wurzel 3.

Danke für die schnelle Hilfe!

Bezug
                
Bezug
Steigung eines Graphen: Wendestellen
Status: (Antwort) fertig Status 
Datum: 15:01 Di 28.12.2004
Autor: Loddar


> Achso, bei gebrochen rationalen Funktionen liegen die
> extremen Steigungen also bei den Wendestellen?

[notok]
Nein, das gilt für alle Funktionen, also nicht nur die gebrochen rationalen Funktionen.
[aufgemerkt] Wendestellen sind immer die Extremstellen der Steigung.


> Denn nachdem ich die 2. Ableitung (also die Ableitung der
> Steigerungsfunktion) gebildet habe und =0 setzte, kam ich
> ebenfalls auf + bzw. - 1/Wurzel 3.

[ok] Fein ...


Loddar

PS: Mach' Dich mal in einem ruhigen Moment mit dem Formeleditor vertraut. Das ist mit etwas Übung nicht schwer ...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de