Stellenverhalten in einem Turm < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:05 Fr 23.05.2014 | Autor: | diddy449 |
Aufgabe | Ich wollte für die Funktionenkörpererweiterung über [mm] $\IF_9$ [/mm] mit der erzeugenden
Gleichung [mm] $$y^2 [/mm] = [mm] (x^2+1)/2x,$$ [/mm] welche aus dem Stichtenoht Seite 253f kommt, das komplette Stellenverhalten bestimmen.
Das heißt für alle Stellen $P$ in [mm] $\IF_9(x)$ [/mm] und [mm] $\IF_9(y)$ [/mm] die Verzweigungsindizes $e(P)$, relativen Trägheitsgrade $f(P)$ und die Anzahl an Stellen über $P$ in [mm] $\IF_q(x,y)$ [/mm] $r(P)$ bestimmen. |
Hallo,
ich hoffe hier ist jemand der mit der Materie vertraut ist und mir helfen will.
Ich beginne erstmal mit den Stellen von [mm] $\IF_9(x)$ [/mm] und dabei ist mir zwar klar, warum die von $x, [mm] \, \frac{1}{x}, \, x^2+1$ [/mm] erzeugten Stellen verzweigen müssen, doch warum sind das die einzigen? Allgemein scheint es ja so zu sein, dass Stellen die keine Nullstellen oder Pole der definierenden Gleichung sind, auch nicht verzweigen.
Als nächstes würde ich für die restlichen Stellen versuchen, $r(P)$ zu bestimmen und mit der Fundamentalgleichung $2 = r(P) [mm] \, [/mm] f(P) [mm] \, [/mm] e(P)$ die letzte Information herauszubekommen.
Ich wüsste aber auch nicht, wie ich $r(P)$ berechnen könnte.
Vielen Dank schonmal.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:42 So 25.05.2014 | Autor: | felixf |
Moin,
> Ich wollte für die Funktionenkörpererweiterung über
> [mm]\IF_9[/mm] mit der erzeugenden
> Gleichung [mm]y^2 = (x^2+1)/2x,[/mm] welche aus dem Stichtenoht
> Seite 253f kommt, das komplette Stellenverhalten
> bestimmen.
>
> Das heißt für alle Stellen [mm]P[/mm] in [mm]\IF_9(x)[/mm] und [mm]\IF_9(y)[/mm] die
> Verzweigungsindizes [mm]e(P)[/mm], relativen Trägheitsgrade [mm]f(P)[/mm]
> und die Anzahl an Stellen über [mm]P[/mm] in [mm]\IF_q(x,y)[/mm] [mm]r(P)[/mm]
> bestimmen.
>
> Hallo,
>
> ich hoffe hier ist jemand der mit der Materie vertraut ist
> und mir helfen will.
>
> Ich beginne erstmal mit den Stellen von [mm]\IF_9(x)[/mm] und dabei
> ist mir zwar klar, warum die von [mm]x, \, \frac{1}{x}, \, x^2+1[/mm]
> erzeugten Stellen verzweigen müssen, doch warum sind das
> die einzigen? Allgemein scheint es ja so zu sein, dass
> Stellen die keine Nullstellen oder Pole der definierenden
> Gleichung sind, auch nicht verzweigen.
Kennst du Theorem 3.3.7 (Kummer), Seite 86? Das ist hier sehr praktisch und hilft dir bei allen Stellen, bei denen [mm] $(x^2 [/mm] + 1)/(2x)$ keinen Pol hat, direkt weiter, das Verzweigungsverhalten von diesen Stellen in [mm] $\IF_9(x, [/mm] y)$ zu bestimmen.
(Daraus folgt auch insbesondere: in allen Stellen von [mm] $\IF_9(x), [/mm] in denen [mm] $(x^2 [/mm] + 1)/(2x)$ weder einen Pol noch eine Nullstelle hat, gibt es keine Verzweigung, da du dort in [mm] $\IF_9(x, [/mm] y)$ entweder zwei verschiedene Stellen von Grad 1 hast oder eine von Grad 2.)
Bleiben die Stellen, in denen [mm] $(x^2 [/mm] + 1)/(2x)$ einen Pol hat. Das ist die Stelle definiert durch $x=0$ sowie die unendliche Stelle von [mm] $\IF_9(x)$.
[/mm]
> Als nächstes würde ich für die restlichen Stellen
> versuchen, [mm]r(P)[/mm] zu bestimmen und mit der
> Fundamentalgleichung [mm]2 = r(P) \, f(P) \, e(P)[/mm] die letzte
> Information herauszubekommen.
>
> Ich wüsste aber auch nicht, wie ich [mm]r(P)[/mm] berechnen
> könnte.
Nun, $r(P) = [mm] \frac{f(P) e(P)}{2}$ [/mm]
Wenn die Stelle $P$ zu [mm] $\alpha \in \IF_{9^k}$ [/mm] gehoert (mit $k = [mm] \deg [/mm] P$), sind die Werte von $r(P)$, $f(P)$ und $e(P)$ eindeutig dadurch bestimmt, ob [mm] $T^2 [/mm] - [mm] \frac{\alpha^2 + 1}{2 \alpha}$ [/mm] irreduzibel in [mm] $\IF_{9^k}$ [/mm] ist oder nicht. In diesen Stellen ist [mm] $\frac{\alpha^2 + 1}{2 \alpha}$ [/mm] immer ein wohldefiniertes Element [mm] $\neq [/mm] 0$.
LG Felix
|
|
|
|