www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Stereometrie
Stereometrie < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stereometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Di 09.03.2004
Autor: EOSMAN

Wie berechnet man eine solche Aufgabe:
Ein Kegel mit dem Volumen V= 1000 cm³ und der Höhe h = 19,5 cm
wird parallel zur Grundfläche im Abstand h1 = 8,4 cm abgeschnitten.
Auf die Schnittfläche wird ein anderer Kegel mit der Matellinie s= 6.0cm aufgesetzt. Berechnen sie das Volumen des entstandenen Gesamtkörpers.
Die Skizze kann ich auf anfrage emailen!!
Hoffentlich kann mir jemand helfen!!!!
Danke EOSMAN

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Stereometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 Di 09.03.2004
Autor: Marc

Hallo EOSMANN,

willkommen im MatheRaum! :-)

Ja, stelle die Skizze hier ins Forum, falls du sie gerade zur Hand hast, oder maile sie mir zu, dann stelle ich sie rein.

Alles Gute,
Marc



Bezug
        
Bezug
Stereometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Di 09.03.2004
Autor: Oliver

Hallo,

erstmal zur Benennung:
$h$ - Gesamthöhe des Ursprungskegels
[mm] $h_1$ [/mm] - Höhe des Kegelstumpfes nach Abschneiden der Spitze
[mm] $h_2$ [/mm] - Höhe des aufgesetzten Kegels
[mm] $r_1$ [/mm] - Radius des Ursprungskegels/Kegelstumpfes
[mm] $r_2$ [/mm] - Radius des aufgesetzten Kegels
$V$ - Volumen des Ursprungskegels
[mm] $V_1$ [/mm] - Volumen des Kegelstumpfes
[mm] $V_2$ [/mm] - Volumen des aufgesetzten Kegels

Um die Aufgabe zu lösen, brauchst Du einige Standardkniffe, die bei diesem Aufgabentypus immer wieder benötigt werden: Strahlensatz und Satz des Pythagoras.

Dazu noch die normale Formel zur Berechnung des Kegelvolumens [mm] ($V=\frac{1}{3} r^2 [/mm] h [mm] \pi$) [/mm] und wir haben alles zusammen zur Beantwortung:

1. Berechnung des Radius' [mm] $r_1$: [/mm]
Du hast das Volumen und die Höhe gegeben, also bekommst Du den Radium durch die Volumenformel
[mm]V=\frac{1}{3}h {r_1}^2 \pi[/mm]

2. Berechnung des Radius' [mm] $r_2$: [/mm]
Hier benutzt Du den Strahlensatz. Da der Schnitt [i|parallel zur Grundfläche[/i] erfolgte, gilt das Verhältnis
[mm]\frac{h}{h-h_1} = \frac{r_1}{r_2}[/mm]

3. Berechnung des Volumens [mm] $V_1$: [/mm]
Das Volumen des Stumpfes ist das Gesamtvolumen abzgl. der Spitze, also
[mm]V_1 = V - \frac{1}{3} {r_2}^2 (h-h_1) \pi[/mm]

4. Berechnung des Volumens [mm] $V_2$: [/mm]
Die Höhe des aufgesetzten Kegels berechnest Du mit dem Satz des Pythagoras, da Mantel, Höhe und Radius ein rechtwickliges Dreieck bilden. Das Volumen berechnest Du anschließend wie üblich mit obiger Formel.

5. Berechnung des Gesamtvolumens $V$:
Jetzt brauchst Du nur noch das Volumen des Stumpfes und des aufgesetzten Kegels addieren.

Versuch' doch mal die fehlenden Schritte selbst zu rechnen und poste dann hier Deine (Zwischen-)Ergebnisse. Wir schauen dann mal drüber.

Gruß
Oliver

P.S. @marc: Habe vorhin gemerkt, dass man ja auch "$" zum Setzen von mathematischem Text verwenden kann. Wäre klasse, wenn Du das noch in die Anleitung aufnehmen könntest, nimmt einem eine Menge Arbeit ab.

Bezug
                
Bezug
Stereometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:02 Di 09.03.2004
Autor: Marc

Hallo Oliver,

> P.S. @marc: Habe vorhin gemerkt, dass man ja auch "$" zum
> Setzen von mathematischem Text verwenden kann. Wäre klasse,
> wenn Du das noch in die Anleitung aufnehmen könntest, nimmt
> einem eine Menge Arbeit ab.

Das Problem mit den $-Zeichen ist, dass sie nicht erkannt werden, wenn sie mehrzeilig gesetzt werden, z.B.
$ x= 5
y = 2 $
wird nicht als Formel gesetzt.

(Der Grund für die Einzeiligkeit ist übrigens oben zu sehen: Es ist schwer zu erkennen, dass das erste Dollarzeichen nicht der Anfang einer Formel ist.)

Um die Leser nicht zusätzlich zu verwirren, habe ich auf die Dokumentation diese Features verzichtet.

Übrigens kannst du die Anleitung ja auch selbst ändern :-), mit dem Link "Inhalt dieser Seite bearbeiten".

Viele Grüße,
Marc.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de