Sternförmigkeit zeigen! < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:47 So 25.01.2009 | Autor: | tau |
Aufgabe | Ist [mm] \{a \in \IR^{3} | 2x²+3y²+4z²\} [/mm] sterförmig?
|
Also, leider habe ich im Netz keine richtige Beispielaufgabe wie oben gefunden, und selbst komme ich nun schnell nicht darauf, wie ich es zeigen soll. Für einen Tip waere ich dankbar. Meine Idee: Ich wandle die Eigenschaft der Menge um, und zeige, das es eine Erweiterung des Einheitskugel ist.
Mfg tau
|
|
|
|
Da stimmt etwas nicht. Zunächst einmal ist der Zusammenhang zwischen [mm]a[/mm] und [mm]x,y,z[/mm] nicht klar. Ich vermute einmal, daß [mm]a = (x,y,z)[/mm] sein soll. Und dann muß ja auch irgendeine Gleichung oder Ungleichung vorliegen, wenn sinnvoll eine Menge beschrieben werden soll. Vermutlich soll es [mm]2x^2 + 3y^2 + 4z^2 \leq 1[/mm] oder ähnlich heißen. Ich gehe jetzt einmal davon aus. Dann ist die Menge nämlich ein Vollellipsoid mit [mm]0 = (0,0,0)[/mm] als Mittelpunkt. Und ein solches ist natürlich sternförmig mit [mm]0[/mm] als Sternpunkt. Ist nämlich [mm](x,y,z)[/mm] ein Punkt des Ellipsoids, gilt also [mm]2x^2 + 3y^2 + 4z^2 \leq 1[/mm], dann ist auch jedes [mm](x',y',z') = \lambda (x,y,z)[/mm] mit [mm]0 \leq \lambda \leq 1[/mm] ein Punkt des Ellipsoids. Einfach in den Term einsetzen und [mm]\lambda^2[/mm] ausklammern.
|
|
|
|