www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Stetige Fortsetzung
Stetige Fortsetzung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetige Fortsetzung: Max Definitionsbereich
Status: (Frage) beantwortet Status 
Datum: 17:08 So 29.04.2012
Autor: Yoca

Aufgabe
Geben Sie für die folgende Funktionen den maximalen Definitionsbereich D[mm] \subset [/mm] R an und untersuche Sie ihr Verhaltzen an dne Rändern von D ( inklusive - unendlich bis + unendlich)

B) g(x) = sin( [mm] \bruch {1}{x^2-1} [/mm])

Ich persönlich habe die Aufgabe versucht zu rechnen und bin auf Probleme gestoßen. Falls hier die Regel von l´hospital angewendet werden müsste, könnte ich es noch hinbekommen. Soweit ich weiß kommt es hier aber nicht in Frage, da der Wert oben und Unten nicht "Null" wird.

Es wäre nett, wenn mir da jemand weiter helfen könnte.


Grüße Yoca


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stetige Fortsetzung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 So 29.04.2012
Autor: Marcel

Hallo,

> Geben Sie für die folgende Funktionen den maximalen
> Definitionsbereich D[mm] \subset[/mm] R an und untersuche Sie ihr
> Verhaltzen an dne Rändern von D ( inklusive - unendlich
> bis + unendlich)
>  
> B) g(x) = sin( [mm]\bruch {1}{x^2-1} [/mm])
>  Ich persönlich habe
> die Aufgabe versucht zu rechnen und bin auf Probleme
> gestoßen. Falls hier die Regel von l´hospital angewendet
> werden müsste, könnte ich es noch hinbekommen. Soweit ich
> weiß kommt es hier aber nicht in Frage, da der Wert oben
> und Unten nicht "Null" wird.
>  
> Es wäre nett, wenn mir da jemand weiter helfen könnte.

die Funktion kann offenbar überall auf [mm] $\IR \setminus \{-1,\;1\}$ [/mm] als definiert angesehen werden.

Weil
[mm] $$(\*)\;\;\;\lim_{y \to \infty}\sin(y) \text{ und }\lim_{y \to- \infty}\sin(y)$$ [/mm]
nicht existieren (warum?), solltest Du erkennen, dass auch
[mm] $$\lim_{x \to 1^+}f(x) \text{ und }\lim_{x \to 1^-}f(x)$$ [/mm]
nicht existieren. (Man kann es fast analog begründen - will heißen: Wenn Du verstanden hast, warum der entsprechende Limes aus [mm] $(\*)$ [/mm] nicht existieren kann, solltest Du auch analog argumentieren können, warum die erwähnten beiden einseitigen Grenzwerte oben nicht existieren können).
Analog kann man begründen, dass auch an der Stelle [mm] $x=-1\,$ [/mm] die beidseitigen Grenzwerte bzgl. [mm] $f\,$ [/mm] nicht existieren können (oder man nutzt hierzu aus, wenn man die Nichtexistenz der einseitigen Grenzwerte an der Stelle [mm] $1\,$ [/mm] bzgl. [mm] $f\,$ [/mm] bewiesen hat, dass [mm] $f\,$ [/mm] eine gerade Funktion ist: [mm] $f(-x)=f(x)\,$ [/mm] für alle [mm] $x\,$). [/mm]

Und naja:
Was [mm] $\lim_{x \to \infty}\sin(1/(1-x^2))$ [/mm] ist, solltest Du eigentlich herausfinden können - denn es ist ja [mm] $\lim_{|x| \to \infty}1/(1-x^2)=0$ [/mm] und der Sinus ist stetig.

Oder Du benutzt
[mm] $$|\sin(p)| \le [/mm] |p|$$
für alle $p [mm] \in \IR\,.$ [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de