Stetige Verteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:20 Di 27.05.2014 | Autor: | Musikuss |
Hallo ihr!
Warum ist die Wahrscheinlichkeit bei einer stetigen Verteilung einen ganz bestimmten Wert zu treffen = 0?
Liegt das an dem e in der Funktion? Oder weil es um Zeit geht? Ich kann das irgendwie nicht richtig formulieren..
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo,
> Hallo ihr!
>
> Warum ist die Wahrscheinlichkeit bei einer stetigen
> Verteilung einen ganz bestimmten Wert zu treffen = 0?
> Liegt das an dem e in der Funktion? Oder weil es um Zeit
> geht? Ich kann das irgendwie nicht richtig formulieren..
Nein, im Prinzip liegt es am Wesen der Stetigkeit. Technisch gesehen ist es einfach:
[mm] P(X=c)=\int_c^c{f(x) dx}=0
[/mm]
Aber deine Frage zielt ja eher auf das Grundverständnis. Nehmen wir an, die Länge einer bestimmten Schraubensorte wäre bspw. normalverteilt. Jetzt entnimmt man einer Stichprobe dieser Schraubensorte eine Schraube und misst und sagt: aha, die hat genau die Soll-Länge, also den Mittelwert der Verteilung. Jetzt frage dich: wenn man die Schraube mit immer genaueren Messinstrumenten vermessen würde, was denkst du: würde es bei dieser exakten Messung bleiben oder würde nicht doch irgendwann an der soundsovielten Stelle nach dem Komma eine Abweichung gemessen?
Es ist sehr ratsam, im Zusammenhang mit diesen Fragen über das Prinzip des Kontinuierlichen in Form der reellen Zahlen nachzudenken.
Gruß, Diophant
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:43 Di 27.05.2014 | Autor: | Musikuss |
Danke für die schnelle Antwort!
> Aber deine Frage zielt ja eher auf das Grundverständnis.
> Nehmen wir an, die Länge einer bestimmten Schraubensorte
> wäre bspw. normalverteilt. Jetzt entnimmt man einer
> Stichprobe dieser Schraubensorte eine Schraube und misst
> und sagt: aha, die hat genau die Soll-Länge, also den
> Mittelwert der Verteilung. Jetzt frage dich: wenn man die
> Schraube mit immer genaueren Messinstrumenten vermessen
> würde, was denkst du: würde es bei dieser exakten Messung
> bleiben oder würde nicht doch irgendwann an der
> soundsovielten Stelle nach dem Komma eine Abweichung
> gemessen?
Ich beschäftige mich gerade mit der Exponentialverteilung.
Lässt sich in dem Zusammenhang bspw. sagen, dass die Wahrscheinlichkeit einen bestimmten Wert/Zeitpunkt zw. zwei Telefonanrufen zu bestimmen = 0 ist, da man ja nicht nur von Stunden und Minuten, sondern immer kleineren Zeiteinheiten ausgeht und somit auf keinen endlichen Wert trifft?
|
|
|
|
|
Hallo,
> Danke für die schnelle Antwort!
>
> > Aber deine Frage zielt ja eher auf das Grundverständnis.
> > Nehmen wir an, die Länge einer bestimmten Schraubensorte
> > wäre bspw. normalverteilt. Jetzt entnimmt man einer
> > Stichprobe dieser Schraubensorte eine Schraube und misst
> > und sagt: aha, die hat genau die Soll-Länge, also den
> > Mittelwert der Verteilung. Jetzt frage dich: wenn man die
> > Schraube mit immer genaueren Messinstrumenten vermessen
> > würde, was denkst du: würde es bei dieser exakten Messung
> > bleiben oder würde nicht doch irgendwann an der
> > soundsovielten Stelle nach dem Komma eine Abweichung
> > gemessen?
>
> Ich beschäftige mich gerade mit der
> Exponentialverteilung.
> Lässt sich in dem Zusammenhang bspw. sagen, dass die
> Wahrscheinlichkeit einen bestimmten Wert/Zeitpunkt zw. zwei
> Telefonanrufen zu bestimmen = 0 ist, da man ja nicht nur
> von Stunden und Minuten, sondern immer kleineren
> Zeiteinheiten ausgeht und somit auf keinen endlichen Wert
> trifft?
Ja: P(X=c)=0 gilt für jede stetige Verteilung!
Gruß, Diophant
|
|
|
|