www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Stetige, beschränkte Funktion
Stetige, beschränkte Funktion < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetige, beschränkte Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 Di 11.11.2014
Autor: Die_Suedkurve

Aufgabe
Sei [mm] C_b(\IR^n) [/mm] der Raum der stetigen beschränkten Funktionen auf [mm] \IR^n. [/mm]

1.) Sei f [mm] \in C_b(\IR^n) [/mm] mit kompaktem Träger. Beweisen Sie, dass die Abbildung [mm] \IR^n \to C_b(\IR^n), [/mm] y [mm] \mapsto \tau_yf [/mm] stetig ist, wobei [mm] \tau_yf(x) [/mm] := f(x-y) [mm] \forall [/mm] x [mm] \in \IR^n. [/mm]

2.) Zeigen Sie, dass die Aussage aus Teil 1 falsch sein kann, wenn der Träger von f nicht kompakt ist.


Hallo,

kann mir jemand bei 1.) helfen? Ich weiß nicht, wie ich anfangen soll.

Edit:

Also meine Lösung zu 1.) wäre folgende:

Definiere [mm] \Phi: \IR^n \to C_b(\IR^n), [/mm] y [mm] \mapsto \tau_yf [/mm]
Sei [mm] y_n \to [/mm] y für n [mm] \to \infty [/mm]

Dann folgt: [mm] \limes_{n\rightarrow\infty} \Phi(y_n)(x) [/mm] = [mm] \limes_{n\rightarrow\infty} \tau_{y_n}f(x) [/mm] = [mm] \limes_{n\rightarrow\infty} f(x-y_n) [/mm] = [mm] \limes_{n\rightarrow\infty} [/mm] f(x-y) = [mm] \tau_yf(x) [/mm] = [mm] \Phi(y)(x). [/mm] Hier wurde benutzt, dass f stetig ist, aber ich habe nicht benutzt, dass f einen kompakten Träger hat. Wo ist also der Fehler?

Grüße

        
Bezug
Stetige, beschränkte Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Di 11.11.2014
Autor: andyv

Hallo,

du willst Konvergenz bzgl. der Supremumsnorm haben, d.h. $ [mm] \| f(\cdot-y_n)-f(\cdot-y)\|_\infty\to [/mm] 0 $.

Dafür ist zu zeigen, dass jede stetige Funktion mit kompektem Träger sogar glm. stetig ist.

Liebe Grüße

Bezug
        
Bezug
Stetige, beschränkte Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:22 Mi 12.11.2014
Autor: fred97


> Sei [mm]C_b(\IR^n)[/mm] der Raum der stetigen beschränkten
> Funktionen auf [mm]\IR^n.[/mm]
>  
> 1.) Sei f [mm]\in C_b(\IR^n)[/mm] mit kompaktem Träger. Beweisen
> Sie, dass die Abbildung [mm]\IR^n \to C_b(\IR^n),[/mm] y [mm]\mapsto \tau_yf[/mm]
> stetig ist, wobei [mm]\tau_yf(x)[/mm] := f(x-y) [mm]\forall[/mm] x [mm]\in \IR^n.[/mm]
>  
> 2.) Zeigen Sie, dass die Aussage aus Teil 1 falsch sein
> kann, wenn der Träger von f nicht kompakt ist.
>  
> Hallo,
>  
> kann mir jemand bei 1.) helfen? Ich weiß nicht, wie ich
> anfangen soll.
>  
> Edit:
>  
> Also meine Lösung zu 1.) wäre folgende:
>  
> Definiere [mm]\Phi: \IR^n \to C_b(\IR^n),[/mm] y [mm]\mapsto \tau_yf[/mm]
>  
> Sei [mm]y_n \to[/mm] y für n [mm]\to \infty[/mm]
>  
> Dann folgt: [mm]\limes_{n\rightarrow\infty} \Phi(y_n)(x)[/mm] =
> [mm]\limes_{n\rightarrow\infty} \tau_{y_n}f(x)[/mm] =
> [mm]\limes_{n\rightarrow\infty} f(x-y_n)[/mm] =
> [mm]\limes_{n\rightarrow\infty}[/mm] f(x-y) = [mm]\tau_yf(x)[/mm] =
> [mm]\Phi(y)(x).[/mm] Hier wurde benutzt, dass f stetig ist, aber ich
> habe nicht benutzt, dass f einen kompakten Träger hat. Wo
> ist also der Fehler?

Ergänzend zu meinem Vorredner:

Mit

[mm]\limes_{n\rightarrow\infty} \Phi(y_n)(x)[/mm] =  [mm]\limes_{n\rightarrow\infty} \tau_{y_n}f(x)[/mm] =  [mm]\limes_{n\rightarrow\infty} f(x-y_n)[/mm] = [mm]\limes_{n\rightarrow\infty}[/mm] f(x-y) = [mm]\tau_yf(x)[/mm] = [mm]\Phi(y)(x).[/mm]

hast Du nur die punktweise Konvvergenz von [mm] (\Phi(y_n)) [/mm] gegen [mm] \Phi(y) [/mm] gezeigt, aber nicht die gleichmäßige Konvergenz, also die Konvergenz in der Supremumsnorm.

FRED


>  
> Grüße


Bezug
                
Bezug
Stetige, beschränkte Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:49 Di 18.11.2014
Autor: Die_Suedkurve

Danke euch beiden. Die Tipps haben mir geholfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de