www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Stetigkeit
Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:02 Di 17.01.2006
Autor: charly1607

Aufgabe 1
Die Signum- Funktion sgn: IR ---> IR ist definiert durch
[mm] sgn(x)=\begin{cases} -1, & \mbox{für } x \mbox{kleiner 0} \\ 0, & \mbox{für } x \mbox{gleich 0}\\1, & \mbox{für } x\mbox{größer 0} \end{cases} [/mm]
Untersuchen Sie diese Funktion auf Stetigkeit.

Aufgabe 2
Die Funktion f: [a,b] --> [mm] \IR [/mm] sei stetig, und es gelte f([a,b]) [mm] \subset [/mm] [a,b]. Zeigen Sie, dass f einen Fixpunkt besitzt, d.h. es gibt ein x' [mm] \in [/mm] [a,b] mit f(x')=x'.
Hinweis: Führen sie eine neue Funktion F:[a,b] -->  [mm] \IR [/mm] mit F(x):=f(x)-x ein und benutzen Sie anschließend den Zwischenwertsatz.

Aufgabe 3
Sei [mm] D\subset \IR. [/mm] Eine Funktion f: D --> [mm] \IR [/mm] heißt Lipschitz-stetig in D, wenn es eine Konstante L>0 gibt, sodass für alle x,y [mm] \in [/mm] D gilt  |f(x)-f(y) |<= L |x-y|.
Zeigen Sie: Eine Lipschitz-stetige Funktion ist gleichmäßig stetig.

Hi,
hat jemand Ahnung von der Materie, der mir hier helfen könnte. Ist echt super wichtig. Wäre nett, wenn mir jemand hilft. Danke

        
Bezug
Stetigkeit: zu Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 22:12 Di 17.01.2006
Autor: Loddar

Hallo Charly!


Damit eine Funktion an der Stelle [mm] $x_0$ [/mm] stetig ist, müssen sowohl der rechtsseitige Grenzwert, der linksseitige Grenzwert soie der eigentliche Funktionswert [mm] $f(x_0)$ [/mm] übereinstimmen.

Interessant bei diesen zusammengesetzten Funktionen sind die Nahtstellen, hier also: [mm] $x_0 [/mm] \ = \ 0$ .


Wie sieht denn der linksseitige Grenzwert für diese Funktion aus? Wir nähern uns also von links, d.h. aus dem Negativen.

[mm] $\limes_{x\rightarrow 0\uparrow} [/mm] sgn(x) \ = \ [mm] \limes_{x\rightarrow 0\uparrow} [/mm] (-1) \ =\ -1$


Wie sieht es nun mit dem rechtsseitigen Grenzwert und dem Funktionswert $f(0)_$ aus?


Gruß
Loddar


Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:30 Mi 18.01.2006
Autor: MatthiasKr

Hallo Susann,

erstmal zu Aufgabe 2: die lösung findest du vermutlich in jedem ana1-buch und auch bereits mehrmals hier im forum, ganz abgesehen davon, dass die lösung eigentlich schon in der aufgabe steht... ;-).

Aufgabe3:
Schaue dir nochmal die definition der gleichmäßigen stetigkeit an:

[mm] $\forall \varepsilon>0 \exists \delta>0 \forall x_1,x_2\in [/mm] D: [mm] |x_1-x_2|<\delta \Rightarrow |f(x_1)-f(x_2)|<\varepsilon$ [/mm]

Du musst also [mm] $|f(x_1)-f(x_2)|$ [/mm] gleichmäßig abschätzen, was aber durch die lipschitz-bedingung gewährleistet wird.

Sei [mm] $\varepsilon>0$ [/mm] wie oben und $L$ die lipschitz-konstante. wählt man nun [mm] $\delta=\varepsilon/L$, [/mm] dann erfüllt dieses [mm] $\delta$ [/mm] die bedingungen der gleichmäßigen stetigkeit. qed.

VG
Matthias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de