Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:15 Sa 07.07.2007 | Autor: | kiriS |
Aufgabe | geg: f: [mm] \IR^{2} \to \IR [/mm] definiert durch f(x,y):= { [mm] \bruch{xy^{2}}{x^{2}+y^{2}}, (x,y)\not= [/mm] (0,0) und 0, (x,y)=(0,0)}
z.z.: Stetigkeit im Ursprung untersuchen |
Hallo Zusammen,
leider weiß ich überhaupt nicht wie ich hier vorgehen muss. Könnte mir da bitte jemand helfen?
Vielen lieben Dank im voraus.
Kira
|
|
|
|
> geg: f: [mm]\IR^{2} \to \IR[/mm] definiert durch
> [mm]f(x,y):= \begin{cases}
\bruch{xy^{2}}{x^{2}+y^{2}} & (x,y)\neq (0,0)\\
0 & (x,y) = (0,0)
\end{cases}[/mm]
>
> z.z.: Stetigkeit im Ursprung untersuchen
> Hallo Zusammen,
>
> leider weiß ich überhaupt nicht wie ich hier vorgehen muss.
> Könnte mir da bitte jemand helfen?
Das Verhalten dieser Funktion im Ursprung ist leichter zu verstehen, wenn Du mit Polarkoordinaten arbeitest. Wenn Du also substituierst: $x := [mm] r\cos(\varphi)$ [/mm] und $y := [mm] r\cos(\varphi)$ [/mm] und dann schaust, ob gilt:
[mm]\lim_{(x,y)\rightarrow (0,0)} f(x,y)=\lim_{r\rightarrow 0+}\frac{r\cos(\varphi(r))\cdot r^2\sin^2(\varphi(r))}{r^2\cos^2(\varphi(r))+r^2\sin(\varphi(r))}\overset{?}{=} f(0,0)[/mm]
Da beim Grenzübergang [mm] $r\rightarrow [/mm] 0+$ der Winkel [mm] $\varphi$ [/mm] nicht als konstant angenommen werden darf, habe ich ihn hier als Funktion [mm] $\varphi(r)$ [/mm] von $r$ angeschrieben. Du musst einfach überlegen, ob der Limes für [mm] $r\rightarrow [/mm] 0+$ unabhängig vom Wert von [mm] $\varphi$ [/mm] gleich $f(0,0)$ ist - oder nicht.
Falls ja, ist $f$ in $(0,0)$ stetig. Falls nein, hast Du wenigstens eine klarere Vorstellung davon, bei welcher Art der Annäherung an $(0,0)$ ein Problem mit der Stetigkeit auftreten könnte und kannst eine passende Testfolge [mm] $(x_n,y_n)\rightarrow [/mm] (0,0)$ mit [mm] $\lim_{n\rightarrow \infty} f(x_n,y_n)\neq [/mm] f(0,0)$ konstruieren mit der die Stetigkeit von $f$ im Ursprung widerlegt würde (sollte m.E. hier aber nicht nötig sein).
|
|
|
|