www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Stetigkeit
Stetigkeit < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:57 Mi 15.12.2004
Autor: Semi85

Hallo!
Habe eine Frage zu einer Aufgabe, in der ich die Stetigkeit prüfen soll, weiß aber nicht, wie ich das machen soll..

g(x)= 1+ ln( [mm] \bruch{1}{8} [/mm] x² + [mm] \bruch{1}{2}) [/mm]

Prüfen sie, ob diese Verbindungskurve ohne Knick in die Geraden [mm] y=\bruch{1}{2}*x [/mm] und [mm] y=-\bruch{1}{2}*x [/mm] einmündet.

Habe diese Frage in keinem anderen Forum gestellt.
Danke auch!


        
Bezug
Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:39 Mi 15.12.2004
Autor: Daox

Hi!
Versuche ersteinmal eingene Gedanken und Ansätze zu entwickeln.
Als Tipp: Logarithmen negativer Zahlen und von Null sind nicht definiert.

Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Mi 15.12.2004
Autor: Karl_Pech

Hallo Semi85,


> g(x)= 1+ ln( [mm]\bruch{1}{8}[/mm] x² + [mm]\bruch{1}{2}) [/mm]
>  
> Prüfen sie, ob diese Verbindungskurve ohne Knick in die
> Geraden [mm]y=\bruch{1}{2}*x[/mm] und [mm]y=-\bruch{1}{2}*x[/mm] einmündet.


Manchmal hilft es sich zunächst eine Zeichnung zu machen:


[Dateianhang nicht öffentlich]


Wir sehen jetzt, was mit "Einmünden" gemeint ist. Nach dem obigen "Satz" bilden wir die erste Ableitung mit der Kettenregel:


[m]f'(x) = \frac{1}{{{\textstyle{1 \over 8}}x^2 + {\textstyle{1 \over 2}}}}*\frac{2}{8}x = \frac{{2x}}{{x^2 + 4}}[/m]


Der Zähler ist hier offenbar immer positiv; Wir können ihn also ignorieren. Der Nenner wird für $x = [mm] 0\!$ [/mm] ebenfalls 0, weshalb wir bei [mm] $x\!$ [/mm] einen Extremwert vermuten können. Wir bilden deshalb die 2te Ableitung mit der Quotientenregel:


[m]f^{\left( 2 \right)} \left( x \right) = \frac{{2\left( {x^2 + 4} \right) - 2x*2x}}{{\left( {x^2 + 4} \right)^2 }} = \frac{{2x^2 + 8 - 2x*2x}}{{\left( {x^2 + 4} \right)^2 }} = \frac{{ - 2x^2 + 8}}{{\left( {x^2 + 4} \right)^2 }} = \frac{{2\left( {4 - x^2 } \right)}}{{\left( {x^2 + 4} \right)^2 }}[/m]


Wenn wir hier die 0 einsetzen, erhalten wir eine positive Zahl. Damit besitzt [mm] $f\!$ [/mm] an der Stelle [m][0,1 + \ln \left( {\frac{1}{2}} \right) = 1 + \ln \left( 1 \right) - \ln \left( 2 \right) = 1 - \ln \left( 2 \right)][/m] einen Tiefpunkt.
Die beiden Geraden treffen sich übrigens bei [0,0] (Einfach Terme gleichsetzen.), weshalb deren Schnittpunkt tiefer liegt, als der Tiefpunkt von [mm] $f\!$. [/mm] Übrigens wird die 2te Ableitung hier für [mm] $\pm [/mm] 2$ 0, und wenn man die 3te Ableitung bildet und [mm] $\pm [/mm] 2$ einsetzt, kriegt man auch eine Zahl ungleich 0. Wenn man [mm] $\pm [/mm] 2$ in f einsetzt, kriegt man 1 raus, weshalb f bei [-2,1] und [2,1] Wendestellen besitzt und wenn man 2 oder -2 in die Geraden einsetzt, so kommt ebenfalls 1 raus.


Da 1 > 1-ln(2) > 0 (siehe Schnittpunkt) und gleichzeitig -2 < 0 < 2, liegt der Tiefpunkt von f "zwischen" diesen Geraden und wir haben wirklich so etwas wie eine "Einmündung". ;-)



Viele Grüße
Karl

[P.S. Die 3te Ableitung kannst du zur Übung mal selber bestimmen.]



Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de