www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Stetigkeit
Stetigkeit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Di 08.01.2008
Autor: abi2007LK

Hallo,

ich soll untersuchen in welchen Punkten die Funktion f(x) = [mm] |cos(x^2)| [/mm] stetig ist.

Mir ist klar, dass diese Funktion in unendlich vielen (abgeschlossenen) Intervallen stetig ist, die um x=0 recht "groß" sind und mit x gegen unendlich immer kleiner werden.

Aber wie gehe ich die Aufgabe an?



        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Di 08.01.2008
Autor: Somebody


> Hallo,
>  
> ich soll untersuchen in welchen Punkten die Funktion f(x) =
> [mm]|cos(x^2)|[/mm] stetig ist.
>  
> Mir ist klar, dass diese Funktion in unendlich vielen
> (abgeschlossenen) Intervallen stetig ist, die um x=0 recht
> "groß" sind und mit x gegen unendlich immer kleiner
> werden.
>  
> Aber wie gehe ich die Aufgabe an?

Das hängt davon ab, was Du über Stetigkeit alles als selbstverständlich bekannt voraussetzen darfst.
Idealerweise ist es nicht nötig zu zeigen, dass die Funktionen [mm] $f_1: x\mapsto x^2$, $f_2: x\mapsto \cos(x)$ [/mm] und [mm] $f_3: x\mapsto [/mm] |x|$ stetig sind. Wenn Du zudem verwenden darfst, dass die Zusammensetzung stetiger Funktionen stetig ist, dann kannst Du sogleich schliessen, dass auch diese Zusammensetzung [mm] $f(x)=f_3(f_2(f_1(x)))$ [/mm] bzw. [mm] $f=f_3\circ f_2\circ f_1$ [/mm] (für alle [mm] $x\in\IR$) [/mm] stetig ist.

Mühsamer wird die Sache, wenn Du alles klein-klein via [mm] $\varepsilon$/$\delta$-Argumente [/mm] beweisen musst. In diesem Falle müsstest Du ein [mm] $x_0$ [/mm] und ein [mm] $\varepsilon>0$ [/mm] als vorgegeben annehmen und zeigen können, dass es dann ein [mm] $\delta [/mm] >0$ geben muss, so dass für alle $x$ gilt

[mm]|x-x_0|<\delta \Rightarrow \big||\cos(x^2)|-|\cos(x_0^2)|\big| <\varepsilon[/mm]

Mit anderen Worten: in diesem zweiten (mühsameren) Falle zeigst Du, dass $f$ die Definition von "stetig an der Stelle [mm] $x_0$" [/mm] (für alle [mm] $x_0\in\IR$) [/mm] erfüllt.

Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Di 08.01.2008
Autor: abi2007LK

Ich soll aber nicht nur die Stetigkeit in einem Punkt sondern alle stetigen Punkte der Funktion ermitteln...



Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Di 08.01.2008
Autor: Somebody


> Ich soll aber nicht nur die Stetigkeit in einem Punkt
> sondern alle stetigen Punkte der Funktion ermitteln...

Da die drei Funktionen [mm] $x\mapsto x^2$, $x\mapsto \cos(x)$ [/mm] und [mm] $x\mapsto [/mm] |x|$ in allen Punkten [mm] $x\in\IR$ [/mm] stetig sind, folgt eben auch, dass Dein [mm] $f(x)=|\cos(x^2)|$ [/mm] in allen Punkten [mm] $x\in\IR$ [/mm] stetig ist.


Bezug
        
Bezug
Stetigkeit: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:33 Di 08.01.2008
Autor: DaReava

Eine Lösung kann ich dir gerade leider nicht anbieten,
vielleicht aber einen Ansatz:

Schreibe die Funktion als drei einzelne,
miteinander verknüpfte Funktionen.

Dann müsstest du "lediglich" nachweisen, dass die [mm] x^2-Funktion, [/mm] die cos-Funktion und die Betragsfunktion stetig sind. (die Verknüpfung stetiger Funktionen ist ebenfalls stetig).

Das ist sicher nicht die eleganteste Lösung (und ich bin mir auch nicht 100% sicher ob das so einfach funtioniert).
Betrachte es einfach als Denkanstoß.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de