www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Sa 12.01.2008
Autor: lustigerhurz

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bestimmen Sie für die folgende Funktion [mm] f:[\bruch{1}{2},2] \to \IR [/mm] zu jedem [mm] \varepsilon [/mm] > 0 ein [mm] \delta [/mm] > 0 so dass |f(x) - f(1)| < [mm] \varepsilon [/mm] für alle x [mm] \in [\bruch{1}{2},2] [/mm] mit |x - 1| < [mm] \delta [/mm]

f(x) = [mm] \bruch{1}{4 + x^{2}} [/mm]

Habs eigentlich schon komplett bin mir aber mehr als unsicher ob das richtig ist was ich da gebastelt. Würd mich über Bestätigung oder eventuel Hilfe freuen:

Sei [mm] \varepsilon [/mm] beliebig, wähle [mm] \delta [/mm] = [mm] \varepsilon, [/mm]
sei x [mm] \in [\bruch{1}{2},2] [/mm] mit |x - 1| < [mm] \delta [/mm]

=> |f(x) - f(1)| = [mm] |\bruch{1 - x^{2}}{20 + x^{2}}| [/mm] = [mm] |\bruch{(1 - x)(1 + x)}{20 + x^{2}}| [/mm] < |(1 + x)(1 - x)| [mm] \le [/mm] |1 - x| = |x - 1| < [mm] \delta [/mm] = [mm] \varepsilon [/mm]


        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:51 So 13.01.2008
Autor: Somebody


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Bestimmen Sie für die folgende Funktion [mm]f:[\bruch{1}{2},2] \to \IR[/mm]
> zu jedem [mm]\varepsilon[/mm] > 0 ein [mm]\delta[/mm] > 0 so dass |f(x) -
> f(1)| < [mm]\varepsilon[/mm] für alle x [mm]\in [\bruch{1}{2},2][/mm] mit |x
> - 1| < [mm]\delta[/mm]
>  
> f(x) = [mm]\bruch{1}{4 + x^{2}}[/mm]
>  
> Habs eigentlich schon komplett bin mir aber mehr als
> unsicher ob das richtig ist was ich da gebastelt. Würd mich
> über Bestätigung oder eventuel Hilfe freuen:
>  
> Sei [mm]\varepsilon[/mm] beliebig, wähle [mm]\delta[/mm] = [mm]\varepsilon,[/mm]
>  sei x [mm]\in [\bruch{1}{2},2][/mm] mit |x - 1| < [mm]\delta[/mm]
>  
> => [mm]|f(x) - f(1)| = |\bruch{1 - x^{2}}{20 + x^{2}}| = |\bruch{(1 - x)(1 + x)}{20 + x^{2}}| \red{<} |(1 + x)(1 - x)| \le |1 - x| = |x - 1| < \delta = \varepsilon[/mm]

Bei der Vereinfachung von $|f(x)-f(1)|$ ist Dir ein kleines Fehlerchen unterlaufen. Es ist:

[mm]|f(x)-f(1)|=\Big|\frac{1}{4+x^2}-\frac{1}{4+1^2}\Big|=\Big|\frac{1}{4+x^2}-\frac{1}{5}\Big|=\Big|\frac{1-x^2}{20+\blue{5}x^2}\Big|[/mm]

Die weiteren Schritte der Abschätzung dieser Differenz nach oben kannst Du aber beibehalten, sofern Du das Ungleichheitzeichen [mm] $\red{<}$ [/mm] auf [mm] $\red{\leq}$ [/mm] abschwächst. Denn $x$ kann im Prinzip $1$ sein, und in diesem Falle wäre $|(1+x)(1-x)|=0$.

Bezug
                
Bezug
Stetigkeit: Frage zu einer umformung
Status: (Frage) beantwortet Status 
Datum: 19:11 So 13.01.2008
Autor: berlin06

ich hab mal ne frage zu einer umformung:
wieso gilt: |(1+x)(1-x)| kleiner gleich als |1-x|
ist das ein gesetz das ich anscheinend nich kenne?
gegenbeispiel: für x=2 gilt ja dann nach einsetzen dass 3 < 1 ist ???

Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 So 13.01.2008
Autor: Somebody


> ich hab mal ne frage zu einer umformung:
>  wieso gilt: |(1+x)(1-x)| kleiner gleich als |1-x|
>  ist das ein gesetz das ich anscheinend nich kenne?

Nein, Du hast ganz recht: diese Umformung war falsch. Weil aber [mm] $x\in[1/2;2]$ [/mm] vorausgesetzt wird, kann $|1+x|$ immerhin nicht grösser als $3$ werden. So dass man wenigstens dies hätte

[mm]\ldots\leq |(1+x)(1-x)|=|1+x|\cdot|1-x|\leq 3|x-1| < 3\delta = \varepsilon[/mm]


Sofern man [mm] $\delta$ [/mm] um einen Faktor $3$ kleiner wählt als [mm] $\varepsilon$, [/mm] d.h. [mm] $\delta [/mm] := [mm] \frac{\varepsilon}{3}$. [/mm]

>  gegenbeispiel: für x=2 gilt ja dann nach einsetzen dass 3
> < 1 ist ???

Es geht nichts über aufmerksame Leser: vielen Dank für Deine Frage bzw. Fehlermeldung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de