www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Stetigkeit
Stetigkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: partielle Stetigkeit
Status: (Frage) beantwortet Status 
Datum: 17:28 So 02.03.2008
Autor: hooover

Aufgabe
Finden Sie eine Funktion g: [mm] \IR^{2} \to \IR, [/mm] welche in (0,0) partiell stetig, jedoch nicht stetig ist.

Hallo Liebe Leute,

da ich mich erst seit kurzem mit dem Thema befasse, bin ich mir nicht sicher ob meine Lösung richtig ist.

Ich zeig euch mal was ich hier gamcht habe:

Also als Funktion habe ich [mm] \bruch{1}{x+y} [/mm] gewählt. Ich kann ober nicht sagen ob sie auch wohl definiert ist.

um die partielle Stetigkeit zu zeigen geht man ja wie folgt vor:


[mm] f(x_{n},0) \to [/mm] (0,0)

[mm] f(x_{n},0)=\bruch{1}{x_{n}+0}=\bruch{1}{x_{n}} $\overrightarrow{n\to\infty}$ [/mm] 0 = f(0,0)

[mm] f(0,y_{n}) \to [/mm] (0,0)

[mm] f(0,y_{n})=\bruch{1}{0+y_{n}}=\bruch{1}{y_{n}} $\overrightarrow{n\to\infty}$ [/mm] 0 = f(0,0)

=> f ist partiell stetig in (0,0)

so jetzt soll noch gezeigt werden, dass f nicht (komplett) stetig ist. Dazu brauch man doch nur eine Folge finden die nicht stetig ist.

Also habe ich diese gewählt:

[mm] f(\bruch{1}{n}, 1-\bruch{1}{n}) \to [/mm] (0 ,0)


[mm] f(\bruch{1}{n}, 1-\bruch{1}{n}) [/mm] = [mm] \bruch{1}{\bruch{1}{n}, 1-\bruch{1}{n}}=1$\overrightarrow{n\to\infty}$ [/mm] 1 [mm] \not [/mm] f(0,0)

was zu zeigen war.

stimmt das? oder habe ich da fehler gemacht.


vielen Dank für die antworten

gruß hooover



        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 So 02.03.2008
Autor: Zneques

Hallo,

$ [mm] f(x_{n},0) \to [/mm] $ f(0,0) mit [mm] x_n\to [/mm] 0 [mm] \Rightarrow \bruch{1}{x_n}\to\pm\infty [/mm] für [mm] n\to\infty [/mm]

Somit nicht :
>$ [mm] f(x_{n},0)=\bruch{1}{x_{n}+0}=\bruch{1}{x_{n}} [/mm] $   $ [mm] \overrightarrow{n\to\infty} [/mm] $ 0 = f(0,0)

$ [mm] f(\bruch{1}{n}, 1-\bruch{1}{n}) \to [/mm] f(0 [mm] ,1)\not= [/mm] f(0,0)$

Dein Beispiel passt also nicht. Mal nocht etwas rumtesten/-suchen.

Ciao.

Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 So 02.03.2008
Autor: hooover

Vielen Dank für die Antwort.

versthe irgendwie nicht warum [mm] x_{n} [/mm] gegen Null und n gegen unendlich geht.

Wie geth man denn hier systematisch vor, um eine passende Funktion zu finden?

Ist das Ziel etwa, das sich da was rauskürzt oder funktion gleich Null wird?

etwa wie bei dieser Funktion

[mm] f(x,y)=\bruch{xy}{x^2+y^2} [/mm]

[mm] f(x_{n}, [/mm] 0) = [mm] \bruch{0}{x_{n}} [/mm] = 0 [mm] $\overrightarrow{n\to\infty}[/mm] [/mm] 0 = f(0,0)$


da muß man doch irgendwie nach nem Schema vorgehen müssen ohne ewig lang funktioen zu suchen die passen könnten.


Vielen Dank

gruß hooover


Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Mo 03.03.2008
Autor: Zneques


> [mm] f(x,y)=\bruch{xy}{x^2+y^2} [/mm]

Das klingt doch schon mal ganz ordentlich.
Die Funktion ist jedoch für (0,0) nicht definiert.
Du musst also für (0,0) selbst einen Wert einfügen.

> [mm] f(x_{n},0)=\bruch{0}{x_{n}}=0\quad\overrightarrow{n\to\infty}\quad0=f(0,0) [/mm]

Mit der Bemerkung [mm] x_n\to [/mm] 0 wäre das schonmal ok.

Wenn nun 0 der Wert f(0,0) ist, dann hast du somit Stetigkeit entlang der x-Achse.

y-Achse ?
Warum ist f nicht stetig ?
Für welche [mm] (x_n,y_n)\to [/mm] (0,0) erhält man keine stetige Fkt., da [mm] f(x_n,y_n)\nrightarrow [/mm] f(0,0)=0 ?

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de