Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo Ihr Mathematiker.
Ich habe bisher nicht viel mit Stetigkeit am Hut.
Und brauche deshalb ein Paar Tipps für die Lösung dieser Aufgabe.
Beweisen Sie:
a) Es sei f, g stetig in [a,b] und für alle [mm] x\in\IQ\cap[a,b] [/mm] gelte f(x) = g(x).
Dann gilt f=g in [a,b].
b)Es sei f stetig in [a,b] und [mm] f(x)\in\IQ [/mm] für alle [mm] x\in[a,b]. [/mm] Dann ist f konstant.
|
|
|
|
Hallo Du!
Dieses Forum wird übrigens nicht nur von Mathematikern genutzt !
Eigene Ansätze sind auch erwünscht, sonst landet Deine "Frage" in den Bereich "Fragen für Interessierte" und evtl. antwortet Dir in nächster Zeit keiner.
So, aber jetzt:
b)
f ist stetig auf einem kompakten Intervall.
Somit ist f in jedem Punkt aus diesem Intervall stetig.
Nach Vor. soll nun jeder Funktionswert rational sein.
Da f stetig ist, ex. eine Umgebung zu jedem Punkt aus dem Intervall, so dass in dieser Umgebung auch alle Funktionswerte rational sind.
Da zwischen zwei rationalen Zahlen unendlich viele irrationale Zahlen liegen, sind diese Funktionswerte auch rational und können nicht irrational sein. Diese wäre ein Widerspruch zur Vor.!
Wenn also alle Funktionswerte rational sind und f stetig, muss der Funktionswert also immer der gleiche sein.
Damit kann die Funktion nur konstant sein!
Bei a) bin ich nicht ganz sicher:
Klappt aber fast mit der gleichen Begründung.
f und g stetig auf einem kompakten Intervall.
Gleiche Funktionswerte haben sie an allen rationalen Stellen.
Also ex. eine Umgebung zu jedem rat. Punkt, in der die Funktionswerte gleich sind, also gilt das auch für irrationale Punkte aus dem Intervall.
Damit müssen beide Funktionen gleich sein!
|
|
|
|