Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:36 So 23.03.2008 | Autor: | johnny11 |
Aufgabe | Zeige: Falls f,g: X [mm] \to \IR [/mm] stetig sind im Punkt [mm] x_{0}, [/mm] dann ist auch (f+g)(x) = f(x) + g(x) eine steige Funktion in [mm] x_{0}. [/mm] |
Ich denke, am einfachsten zeigt man dies mit dem Folgenkriterium.
Aber ich weiss nicht genau, wie ich am besten Beginnen soll...
|
|
|
|
Hallo Johnny,
das geht m.E. ziemlich schnell und unkompliziert über die [mm] $\varepsilon/\delta$-Definition:
[/mm]
Da $f$ und $g$ stetig in [mm] $x_0$ [/mm] sind, gibt's zu beliebigem [mm] $\varepsilon>0$ [/mm] ein [mm] $\delta_1>0$ [/mm] mit [mm] $|f(x)-f(x_0)|<\frac{\varepsilon}{2}$ [/mm] für [mm] $|x-x_0|<\delta_1$
[/mm]
und ebenso ein [mm] $\delta_2>0$ [/mm] mit [mm] $|g(x)-g(x_0)|<\frac{\varepsilon}{2}$ [/mm] für [mm] $|x-x_0|<\delta_2$
[/mm]
Nun gilt es, für beliebiges [mm] $\varepsilon>0$ [/mm] den [mm] $|(f+g)(x)-(f+g)(x_0)|=|f(x)+g(x)-f(x_0)-g(x_0)|=|(f(x)-f(x_0))+(g(x)-g(x_0))|$ [/mm] abzuschätzen und ein passendes [mm] $\delta$ [/mm] zu konstruieren, das "passt"
Denke mal an die [mm] $\triangle$-Ungleichung, [/mm] das [mm] $\delta$ [/mm] findest du bestimmt aus [mm] $\delta_a$ [/mm] und [mm] $\delta_2$
[/mm]
LG
schachuzipus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:32 So 23.03.2008 | Autor: | johnny11 |
Vielen Dank,
also ich bin dann folgendermassen vorgegangen:
[mm]|(f+g)(x)-(f+g)(x_0)|=|f(x)+g(x)-f(x_0)-g(x_0)|=|(f(x)-f(x_0))+(g(x)-g(x_0))|[/mm] [mm] \le |f(x)-f(x_{0})| [/mm] + [mm] |g(x)-g(x_{0})| \le \varepsilon
[/mm]
Was muss ich dann aber mit dem [mm] \delta [/mm] machen?
Einfach [mm] \delta_{1} [/mm] und [mm] \delta{2} [/mm] zusammenzählen?
Wie würde man am besten dann die gleiche Aufgabe für (f*g)(x) = f(x)*g(x) lösen? Mit Folgenkriterium oder per [mm] \varepsilon-\delta-Definition?
[/mm]
|
|
|
|
|
Hallo nochmal,
> Vielen Dank,
> also ich bin dann folgendermassen vorgegangen:
>
> [mm]|(f+g)(x)-(f+g)(x_0)|=|f(x)+g(x)-f(x_0)-g(x_0)|=|(f(x)-f(x_0))+(g(x)-g(x_0))|[/mm]
> [mm]\le |f(x)-f(x_{0})|[/mm] + [mm]|g(x)-g(x_{0})| \le \varepsilon[/mm]
>
> Was muss ich dann aber mit dem [mm]\delta[/mm] machen?
> Einfach [mm]\delta_{1}[/mm] und [mm]\delta{2}[/mm] zusammenzählen?
Nein, die beiden Abschätzungen der Beträge [mm] $|f(x)-f(x_0)|<\frac{\varepsilon}{2}$ [/mm] und [mm] $|g(x)-g(x_0)|<\frac{\varepsilon}{2}$ [/mm] gelten jeweils für [mm] $|x-x_0|<\delta_1$ [/mm] bzw. [mm] $|x-x_0|<\delta_2$
[/mm]
Wann ist also beides erfüllt? Doch offenbar für [mm] $\delta:=min\{\delta_1,\delta_2\}$, [/mm] also für das kleinere der beiden.
>
>
> Wie würde man am besten dann die gleiche Aufgabe für
> (f*g)(x) = f(x)*g(x) lösen? Mit Folgenkriterium oder per
> [mm]\varepsilon-\delta-Definition?[/mm]
Das kannst du direkt über das [mm] $\varepsilon-\delta$-Kriterium [/mm] machen, dann musste aber ein bisschen tricksen, um an das [mm] $\delta$ [/mm] zu kommen.
Alternativ geht's über das Folgenkriterium, das läuft dann auf das Rechnen mit Grenzwerten von Folgen hinaus, da habt ihr ja bestimmt schon die Regel für den GW des Produktes zweier konvergenter Folgen bewiesen.
Darauf kannst du dann zurückgreifen, was es natürlich einfacher macht
Aber du kannst es dir aussuchen ...
LG
schachuzipus
|
|
|
|
|
Hallo nochmal,
mit dem Folgenkriterium geht's natürlich auch
$f, g$ stetig in [mm] $x_0$ [/mm] heißt ja, dass für jede Folge [mm] $(x_n)_{n\in\IN}$ [/mm] mit [mm] $\lim\limits_{n\to\infty}x_n=x_0$ [/mm] gilt:
[mm] $\lim\limits_{n\to\infty}f(x_n)=f(x_0)$
[/mm]
Analog für $g$
Wie sieht's dann für $f+g$ aus?
Nimm ne beliebige gegen [mm] $x_0$ [/mm] konvergierende Folge [mm] $(x_n)_{n\in\IN}$ [/mm] her und schaue, ob [mm] $(f+g)(x_n)$ [/mm] auch gegen [mm] $(f+g)(x_0)$ [/mm] konvergiert (für [mm] $n\to\infty$)
[/mm]
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:16 So 23.03.2008 | Autor: | johnny11 |
Hallo,
also mit Hilfe der [mm] \epsilon-\delta-Definiton [/mm] ist mir die Aufgabe jetzt klar. Jetzt würde ich aber auch noch gerde mit dem Folgenkritierium arbeiten.
> > Nimm ne beliebige gegen [mm]x_0[/mm] konvergierende Folge
> [mm](x_n)_{n\in\IN}[/mm] her und schaue, ob [mm](f+g)(x_n)[/mm] auch gegen
> [mm](f+g)(x_0)[/mm] konvergiert (für [mm]n\to\infty[/mm])
>
Wie meinst du das genau?
Also ich kenne ja eben der Satz der sagt, dass die Summe von zwei konvergenten Folgen auch wieder konvergent ist. Muss man hier also auch mit Hilfe dieses Satzes arbeiten, oder anders?
|
|
|
|
|
Hi nochmal,
> Hallo,
> also mit Hilfe der [mm]\epsilon-\delta-Definiton[/mm] ist mir die
> Aufgabe jetzt klar. Jetzt würde ich aber auch noch gerde
> mit dem Folgenkritierium arbeiten.
>
> > > Nimm ne beliebige gegen [mm]x_0[/mm] konvergierende Folge
> > [mm](x_n)_{n\in\IN}[/mm] her und schaue, ob [mm](f+g)(x_n)[/mm] auch gegen
> > [mm](f+g)(x_0)[/mm] konvergiert (für [mm]n\to\infty[/mm])
> >
> Wie meinst du das genau?
> Also ich kenne ja eben der Satz der sagt, dass die Summe
> von zwei konvergenten Folgen auch wieder konvergent ist.
> Muss man hier also auch mit Hilfe dieses Satzes arbeiten,
> oder anders?
jo, und mit der Definition von $(f+g)(x)=f(x)+g(x)$
Sei also [mm] $(x_n)$ [/mm] eine Folge, die gegen [mm] $x_0$ [/mm] konvergiere, also mit [mm] $\lim\limits_{n\to\infty}x_n=x_0$
[/mm]
Dann gilt ja wegen der Stetigkeit von $f$ und $g$ in [mm] $x_0$, [/mm] dass [mm] $\lim\limits_{n\to\infty}f(x_n)=f(x_0)$ [/mm] ist [mm] ($\star$)
[/mm]
und ebenso, dass [mm] $\lim\limits_{n\to\infty}g(x_n)=g(x_0)$ [/mm] ist [mm] ($\star\star$)
[/mm]
Dann ist aber [mm] $\blue{\lim\limits_{n\to\infty}(f+g)(x_n)}=\lim\limits_{n\to\infty}\left[f(x_n)+g(x_n)\right]=\lim\limits_{n\to\infty}f(x_n)+\lim\limits_{n\to\infty}g(x_n)$ [/mm] Grenzwertsätze für konvergente Folgen
[mm] $=f(x_0)+g(x_0)$ [/mm] wegen [mm] $\star$ [/mm] und [mm] $\star\star$
[/mm]
[mm] $=\blue{(f+g)(x_0)}$
[/mm]
Also ist $f+g$ stetig in [mm] $x_0$ [/mm]
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:38 So 23.03.2008 | Autor: | johnny11 |
yep, jetzt ist alles klar. Vielen Dank für die Hilfe.
gruss johnny11
|
|
|
|