www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Stetigkeit
Stetigkeit < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:45 Do 05.06.2008
Autor: AbraxasRishi

Aufgabe
  f(x) = [mm]\bruch{1}{2}x^2[/mm]  für x [mm] \le [/mm] 2
           [mm]\bruch{1}{4}x^2+1[/mm]   für x>2

Gesucht ist die Ableitung an der Stelle [mm] x_0=2 [/mm]

[mm] \limes_{x\rightarrow\(2^-}[/mm]  [mm]\bruch{\bruch{1}{2}x^2-2}{x-2}[/mm]  =2

[mm] \limes_{x\rightarrow\(2^+}[/mm]  [mm]\bruch{\bruch{1}{4}x^2+1-2}{x-2}[/mm]  =1


Hallo!

Als wir heute in der Schule das Thema Stetigkeit besprochen haben, habe ich bemerkt, dass es auf diesem Gebiet noch einige Unklarheiten gibt.
Vielleicht kann mir jemand helfen?

Warum kann man z.B. bei der obigen Aufgabe nicht die Ableitung an der Stelle [mm] x_0=2 [/mm] machen(sondern 2^-)? Es steht doch:   Für x [mm] \le [/mm] 2 und nicht für x <2.

Warum kann man sagen(ohne die Funktion [mm] x_0=2 [/mm] differenziert zu haben) das sie bei [mm] x_0=2 [/mm] auch stetig ist?

Vielen Dank im Voraus

Gruß

Angelika






        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Do 05.06.2008
Autor: schachuzipus

Hallo Angelika,


>  f(x) = [mm]\bruch{1}{2}x^2[/mm]  für x [mm]\le[/mm] 2
>             [mm]\bruch{1}{4}x^2+1[/mm]   für x>2
>  
> Gesucht ist die Ableitung an der Stelle [mm]x_0=2[/mm]
>  
> [mm]\limes_{x\rightarrow\(2^-}[/mm]  [mm]\bruch{\bruch{1}{2}x^2-2}{x-2}[/mm]  
> =2
>  
> [mm]\limes_{x\rightarrow\(2^+}[/mm]  
> [mm]\bruch{\bruch{1}{4}x^2+1-2}{x-2}[/mm]  =1
>  
>
> Hallo!
>  
> Als wir heute in der Schule das Thema Stetigkeit besprochen
> haben, habe ich bemerkt, dass es auf diesem Gebiet noch
> einige Unklarheiten gibt.
>  Vielleicht kann mir jemand helfen?
>  
> Warum kann man z.B. bei der obigen Aufgabe nicht die
> Ableitung an der Stelle [mm]x_0=2[/mm] machen(sondern 2^-)?

Dass die Ableitung an einer Stelle [mm] $x_0$ [/mm] existiert, bedeutet, dass sowohl die linksseitige Ableitung als auch die rechtsseitige Ableitung an dieser Stelle existieren und dass sie übereinstimmen!!

> Es steht doch:   Für x [mm]\le[/mm] 2 und nicht für x <2.
>  
> Warum kann man sagen(ohne die Funktion [mm]x_0=2[/mm] differenziert
> zu haben) das sie bei [mm]x_0=2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

auch stetig ist?


Das kann man so nicht, rechne es nach, linksseitigen und rechttseitigen Limes für $x\to x_0$ von f(x)

(Ich hab's unten aufgeschrieben)

> Vielen Dank im Voraus
>  
> Gruß
>  
> Angelika
>  

diese Aufgabe soll zeigen, dass eine Funktion durchaus an einer Stelle $x_0$ stetig sein kann ohne an dieser Stelle auch differenzierbar zu sein.

Deine Funktion ist in $x_0=2$ stetig, wenn du dir mal den rechtsseitigen und linksseitigen Limes für $x\to 2$ von $f(x)$ anschaust, kommt beide Male 2 heraus:

rechtsseitiger Limes:

$\lim\limits_{x\downarrow 2}f(x)=\lim\limits_{x\downarrow 2}\left(\frac{1}{4}x^2+1}\right)$ denn so ist ja die Funktion f für x>2 definiert

$=\frac{1}{4}\cdot{}2^2+1=2$

und linksseitiger Limes:

$\lim\limits_{x\uparrow 2}f(x)=\lim\limits_{x\uparrow 2}\frac{1}{2}x^2$ denn so ist die Funktion für x\le 2 definiert

$=\frac{1}{2}\cdot{}2^2=2$

Linksseitiger und rechtsseitiger Limes stimmen also überein und sind auch = $f(x_0)=f(2)=2$

Das Ding ist also stetig in $x_0=2$

Aber deine weitere Rechnung zeigt, dass die Funktion in $x_0=2$ nicht diffbar ist, denn linksseitiger und rechtsseitiger Limes des Differenzenquotienten, also $\lim\limits_{x\uparrow 2}\frac{f(x)-f(2)}{x-2}$ und $\lim\limits_{x\downarrow 2}\frac{f(x)-f(2)}{x-2}$ sind verschieden

Also zeigt diese Aufgabe, dass aus Stetigkeit einer Funktion an einer Stelle $x_0$ noch längst nicht Diffbarkeit an dieser Stelle folgt!

ABER: es gilt die umgekehrte Richtung: Wenn eine Funktion an einer Stelle $x_0$ diffbar ist, so ist sie dort auch stetig



LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de