www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:23 Do 10.12.2009
Autor: phyma

Aufgabe
Es sei $f:D [mm] \to \IR$, x\mapsto\begin{cases} x+n, & \mbox{für } x < -n \\ 0, & \mbox{für } x=0 \\x-n,& \mbox{für } x>n\end{cases} [/mm] eine Funktion.
Zeige, dass die Funktion für $n=1$, $n=0,5$ und [mm] $n=\pi$ [/mm] in $x=0$ stetig ist.

Hallo,
ich habe mir überlegt, dass es wohl am sinnvollsten sein wird, die Stetigkeit in $x=0$ mit dem [mm] $\varepsilon$\$\delta$-Kriterium [/mm] zu beweisen.
Zuerst habe ich mir einmal n=1 vorgenommen. (Der Beweis für die drei gegebenen $n$ dürfte ja immer analog ablaufen, oder?)

Ich habe jetzt nur an zwei Stellen ein Problem:

[mm] $\forall \varepsilon>0$ [/mm] gilt:
[mm] $0<|x-0|=|x|<\delta:=\varepsilon-1$ [/mm] (Problem: Gilt nicht mehr für alle [mm] $\varepsilon$... [/mm] oder?)
Daraus folgt:
Für $|x|>1$:
[mm] $|f(x)-f(0)|=|\begin{cases} x+1, & \mbox{für } x < -1 \\ x-1,& \mbox{für } x>1\end{cases}| [/mm] = |x|+|1| [mm] <\delta [/mm] + 1 = [mm] \varepsilon$ [/mm]
Für $x=0$:
Direkt: [mm] $0<\varepsilon$. [/mm] (Stimmt das?)
[mm] $\Rightarrow$ [/mm] Stetigkeit in $x=0$.

Wie kann ich das besser machen?

Vielen Dank schon jetzt!

PS: Das ganze könnte man doch auch allgemein zeigen, oder?

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 06:25 Do 10.12.2009
Autor: fred97

Wie ist denn f für x [mm] \in [/mm] [-n,n] (x [mm] \not=0) [/mm] definiert ?  Hast Du f korrekt wiedergegeben ?

FRED

Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:53 Do 10.12.2009
Autor: phyma

Dort ist f nicht definiert... (sonst wäre es wohl einfacher...) Sonst ginge es ja mit der Folgenstetigkeit auch ganz gut, aber durch die Definitionslücke(n)...?!

Vielen Dank.

Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:52 Do 10.12.2009
Autor: fred97


> Dort ist f nicht definiert... (sonst wäre es wohl
> einfacher...) Sonst ginge es ja mit der Folgenstetigkeit
> auch ganz gut, aber durch die Definitionslücke(n)...?!


Nee, so ist es einfacher ! Nimm eine Folge [mm] (x_n) [/mm] in D mit [mm] x_n \to [/mm] 0. Dann ex. ein m [mm] \in \IN [/mm] mit:  [mm] x_n [/mm] = 0 für n [mm] \ge [/mm] m. somit: [mm] f(x_n) [/mm] = 0 für n [mm] \ge [/mm] m

Fazit: [mm] f(x_n) \to [/mm] 0 =f(0)

FRED

>  
> Vielen Dank.


Bezug
                                
Bezug
Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Do 10.12.2009
Autor: phyma

Mmh... Ok... Doch wohl so einfach... Ich dachte, wegen der Definitionslücke ginge das so nicht, aber irgendwie ist es schon logisch! Danke!!

Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:48 Do 10.12.2009
Autor: angela.h.b.


> Es sei [mm]f:D \to \IR[/mm], [mm]x\mapsto\begin{cases} x+n, & \mbox{für } x < -n \\ 0, & \mbox{für } x=0 \\x-n,& \mbox{für } x>n\end{cases}[/mm]
> eine Funktion.
>  Zeige, dass die Funktion für [mm]n=1[/mm], [mm]n=0,5[/mm] und [mm]n=\pi[/mm] in [mm]x=0[/mm]
> stetig ist.
>  Hallo,
>  ich habe mir überlegt, dass es wohl am sinnvollsten sein
> wird, die Stetigkeit in [mm]x=0[/mm] mit dem
> [mm]\varepsilon[/mm]\[mm]\delta[/mm]-Kriterium zu beweisen.
>  Zuerst habe ich mir einmal n=1 vorgenommen. (Der Beweis
> für die drei gegebenen [mm]n[/mm] dürfte ja immer analog ablaufen,
> oder?)

Hallo,

ja, und deshalb wundert es mich, daß Ihr das für drei so ähnliche Fälle zeigen sollt.

Mich würde mal interessieren, wie die Aufgabe komplett lautet, also mit Vorspiel (!) und allen Teilaufgaben. Oder ist das alles?

Du sollst das sicher für alle [mm] n\in \IR [/mm] untersuchen, oder? Auch für n=0 und negative, richtig?


So, was ich eigentlich sagen wollte:

Du wolltest ja zuerst das [mm] \varespsilon-\delta-Kriterium [/mm] verwenden. Das ist für n>0 sehr einfach.

Wähle zu beliebigem [mm] \varepsilon>0 \delta:= \bruch{n}{2} [/mm] .

Wenn Du nun alle x des Definitionsbereiches betrachtest, die von 0 nicht weiter als [mm] \delta [/mm] entfernt sind, dann stellst Du fest, daß es nur ein einzigens solches x gibt, nämlich x=0,

und [mm] |f(x)-f(0)|<\varepsilon [/mm] ist schnell gezeigt.

Gruß v. Angela




Bezug
                
Bezug
Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:12 Do 10.12.2009
Autor: phyma

Hallo Angela,
ja, für alle [mm] $n\in\IN$, [/mm] soll es dann schließlich im Teil (b) gezeigt werden. Das würde ich einfach dann per Induktion machen...

Dankeschön.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de