Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:33 Di 01.03.2011 | Autor: | Loriot95 |
Aufgabe | Seien f,g:[0,1]-> [mm] \IR [/mm] stetige Funktionen mit f(0) > g(0) und f(1) < g(1).
Beweisen Sie, dass es ein [mm] c\in [/mm] (0,1) gibt mit f(c) = g(c). |
Nun hier habe ich mir zunächst eine Hilfsfunktion definiert:
h(x) = g(x) - f(x) für die gilt, h(0) < 0 und h(1) > 0. Da f und g stetig sind, ist auch h stetig, dann folgt aus dem Zwischenwertsatz das jeder Wert auf dem Intervall (0,1) angenommen wird. Also auch h(x) = 0. D.h g(x) - f(x) = 0
[mm] \Rightarrow [/mm] g(x) = f(x). Ist das so richtig? Fehlt noch was?
LG Loriot95
|
|
|
|
Hallo Loriot,
> Seien f,g:[0,1]-> [mm]\IR[/mm] stetige Funktionen mit f(0) > g(0)
> und f(1) < g(1).
> Beweisen Sie, dass es ein [mm]c\in[/mm] (0,1) gibt mit f(c) = g(c).
> Nun hier habe ich mir zunächst eine Hilfsfunktion
> definiert:
>
> h(x) = g(x) - f(x) für die gilt, h(0) < 0 und h(1) > 0. Da
> f und g stetig sind, ist auch h stetig, dann folgt aus dem
> Zwischenwertsatz das jeder Wert auf dem Intervall (0,1)
> angenommen wird.
Hmm, jeder Wert zwischen [mm]h(0)[/mm] und [mm]h(1)[/mm] wird angenommen!
> Also auch h(x) = 0. D.h g(x) - f(x) = 0
> [mm]\Rightarrow[/mm] g(x) = f(x). Ist das so richtig? Fehlt noch
> was?
Es folgt wegen der Stetigkeit von [mm]h[/mm] und [mm]h(0)<0, h(1)>0[/mm], dass es ein [mm]\xi\in (0,1)[/mm] gibt, so dass [mm]h(\xi)=0[/mm]
Das genügt doch vollkommen für die zu zeigende Aussage
>
> LG Loriot95
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:42 Di 01.03.2011 | Autor: | Loriot95 |
Danke schön :)
|
|
|
|