www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Mi 28.12.2011
Autor: EvelynSnowley2311

Aufgabe
a)   Sei f: [mm] \IR \to \IR [/mm] stetig. Zeige, dass die Nullstellenmenge von f, d.h. die Menge { x [mm] \in \IR [/mm] , f(x)=0} eine abgeschlossene Menge ist.

b) Sei f: [0,1] [mm] \to [/mm] [0,1] stetig, zeige, dass f mind einen fixpunkt besitzt, d.h. es gibt ein x [mm] \in [/mm] [0,1] mit f(x) = x.

huhu

also zu a)

dachte ich mir so:
das Komplement wäre ja x [mm] \in \IR [/mm] , f(x) = beliebig aber ungleich Null oder? Der Bereich des komplements wäre ja offen und dann wäre trivialerweise die Menge abgeschlossen.


b)

hab ich leider keine Idee. Sieht mir nach Zwischenwertsatz aus, aber wieß nicht wie ich das zeigen soll..

        
Bezug
Stetigkeit: Teil b
Status: (Antwort) fertig Status 
Datum: 19:14 Mi 28.12.2011
Autor: ullim

Hi,

betrachte die Funktion g(x)=f(x)-x und schätze g(0) und g(1) ab und wende dann den Zwischenwertsatz an.

Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 Mi 28.12.2011
Autor: EvelynSnowley2311

ah danke für die tolle Hilfsfunktion für b) ;)

ist mein ansatz in a denn richtig? dass das Komplement zur Menge (trivialerweise?) offen ist und das dazu äquivalent die menge abgeschlossen ist?

Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Mi 28.12.2011
Autor: kamaleonti

Hallo,
> ah danke für die tolle Hilfsfunktion für b) ;)
>  
> ist mein ansatz in a denn richtig? dass das Komplement zur
> Menge (trivialerweise?) offen ist

Das trivialerweise lässt sich hier auch begründen mit der Stetigkeit von f.

Sei [mm] A=\{x\in\IR:f(x)\neq0\} [/mm] und [mm] x\in [/mm] A mit [mm] f(x)=c\neq0. [/mm] Dann gibt es zu [mm] \varepsilon=|c|/2 [/mm] eine [mm] \delta>0, [/mm] sodass für [mm] y\in U_\delta(x) [/mm] gilt [mm] f(y)\neq0. [/mm]

LG

> und das dazu äquivalent
> die menge abgeschlossen ist?


Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Do 29.12.2011
Autor: fred97

Zu a):

Sei  A:= [mm] \{ x \in \IR: f(x)=0 \} [/mm]

Nimm eine konvergente Folge aus A her und zeige: lim [mm] x_n \in [/mm] A.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de