www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit 2
Stetigkeit 2 < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:11 So 11.10.2009
Autor: lisa11

Aufgabe
Geben Sie den Definitonsbereich an und untersuchen sie auf Stetigkeit

f(x) = [mm] \frac{x}{ \left| x \right| } [/mm]    


Mein Ansatz

[mm] D_{f} [/mm] = [mm] \IR [/mm]  \ {0}

[mm] \limes_{x\rightarrow\ 1} \frac{x}{x} [/mm] = 1 mit  x > 0
für rechtsseitigen Grenzwert


linksseitiger Grenzwert

[mm] \limes_{x\rightarrow\ 1} \frac{x}{-x} [/mm] = -1 mit x < 0
für den linksseitigen Grenzwert

somit ist 1 [mm] \not= [/mm] -1 und die Funktion ist unstetig

        
Bezug
Stetigkeit 2: Antwort
Status: (Antwort) fertig Status 
Datum: 10:17 So 11.10.2009
Autor: Niladhoc

Hallo,

> Mein Ansatz
>  
> [mm]D_{f}[/mm] = [mm]\IR[/mm]  \ {0}
>  

Das stimmt.

> [mm]\limes_{x\rightarrow\ 1} \frac{x}{x}[/mm] = 1 mit  x > 0
>  für rechtsseitigen Grenzwert
>  

Der Wert von x muss gegen +/-0 streben  (da hast du dich vlt verschrieben).
Dann musst du +/-0 einsetzen und l'Hospital anwenden, nur dass du
|x| ausklammerst:
[mm]\limes_{x\rightarrow\ +0} \frac{x}{|x|}[/mm] =  [mm]\limes_{x\rightarrow\ +0} \frac{1*|x|}{1*|x|}[/mm]=1 für x>0
und [mm]\limes_{x\rightarrow\ -0} \frac{x}{|x|}[/mm] =  [mm]\limes_{x\rightarrow\ -0} \frac{(-1)*|x|}{1*|x|}[/mm]=-1 für x<0

>
> linksseitiger Grenzwert
>  
> [mm]\limes_{x\rightarrow\ 1} \frac{x}{-x}[/mm] = -1 mit x < 0
>  für den linksseitigen Grenzwert
>  
> somit ist 1 [mm]\not=[/mm] -1 und die Funktion ist unstetig

Die Aussage stimmt dann wieder.

lg

Bezug
                
Bezug
Stetigkeit 2: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:28 So 11.10.2009
Autor: Loddar

Hallo Niladhoc!


Wie leitest Du denn $|x|_$ ab?


Gruß
Loddar


Bezug
                        
Bezug
Stetigkeit 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:04 So 11.10.2009
Autor: Niladhoc

Hallo Loddar,

danke für den Hinweis, die Variante ist garnicht die Regel von l'Hospital, die hieße: [mm] \limes_{x\rightarrow a}\bruch{f(x)}{g(x)}=\limes_{x\rightarrow a}\bruch{f'(x)}{g'(x)}. [/mm]

Sorry der Verwechslung wegen.

lg

Bezug
        
Bezug
Stetigkeit 2: Antwort
Status: (Antwort) fertig Status 
Datum: 10:25 So 11.10.2009
Autor: luis52

Moin Lisa,

wenn du den Def-Bereich [mm] $\IR\setminus\{0\}$ [/mm] waehlst, dann ist die Funktion stetig:
Sei [mm] $x_0\in\IR$, $x_0\ne0$. [/mm] Sei ferner [mm] $\varepsilon>0$. [/mm]
1. Fall [mm] $x_0>0$: [/mm] Waehle [mm] $\delta=x_0/2>0$. [/mm] Dann gilt $f(x)=x/|x|=1$
fuer alle [mm] $x\in[x_0-\delta,x_0+\delta]$, [/mm] und wir erhalten [mm] $|f(x)-f(x_0)|=|1-1|\le\varepsilon$. [/mm]

Argumentiere nun fuer den 2. Fall: [mm] $x_0<0$. [/mm]

vg Luis

P.S. Du koennstest $f(0)=0$ setzen, und den Definitionsbereich [mm] $\IR$ [/mm]
verwenden. Dann waere die Funktion unstetig in [mm] $x_0=0$. [/mm]  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de