www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit & Definitionslücken
Stetigkeit & Definitionslücken < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit & Definitionslücken: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Sa 21.10.2006
Autor: Tactics

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich habe eine Frage zur Stetigkeit von Funktionen, die Definitionslücken aufweisen:

Sei f eine Funktion mit:

[mm]f:\IR\rightarrow\IR\[/mm]

[mm]f(x)=\left\{\begin{matrix} 1, & \mbox{wenn}\ x\in\IR\setminus\ (3,5)\ \\ undefiniert, &\mbox{sonst} \end{matrix}\right[/mm]

(Die Funktion ist wahrscheinlich unsauber definiert, mir geht es vor allem darum, dass sie auf einem offenen Intervall undefiniert ist und stetig wäre, wenn man dieses Intervall quasi 'weglassen' würde)

Frage: Ist f für x=5 stetig ?

Meine Gedanken:

Irgendwie fällt es mir schwer, die üblichen Definitionen hier anzuwenden.
Wendet man für a=5 das Epsilon-Delta Kriterium an, so ist es für alle diejenigen x in der Delta Umgebung von a erfüllt, für die die Funktion definiert ist.
Betrachtet man den Grenzwert, so gilt lim x->a+ f(x) = f(a), aber lim x->a- lässt sich weil f(x) undefiniert ist garnicht bilden, oder ?
Existiert dann der lim x->a f(x) überhaupt ? (Normal doch nur, wenn linksseitiger und rechtsseitiger Grenzwert übereinstimmen, oder)
Mir fehlt in den Definitionen einfach eine Aussage darüber, wie in einem solchen Fall zu entscheiden ist (vielleicht übersehe ich sie auch nur...), deshalb möchte ich euch um Rat bitten.

Vielen Dank,
Tactics

        
Bezug
Stetigkeit & Definitionslücken: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Sa 21.10.2006
Autor: Zwerglein

Hi, Tactics,

> ich habe eine Frage zur Stetigkeit von Funktionen, die
> Definitionslücken aufweisen:
>  
> Sei f eine Funktion mit:
>  
> [mm]f:\IR\rightarrow\IR\[/mm]
>  
> [mm]f(x)=\left\{\begin{matrix} 1, & \mbox{wenn}\ x\in\IR\setminus\ (3,5)\ \\ undefiniert, &\mbox{sonst} \end{matrix}\right[/mm]

  
  

> Frage: Ist f für x=5 stetig ?
>  
> Meine Gedanken:
>  
> Irgendwie fällt es mir schwer, die üblichen Definitionen
> hier anzuwenden.
>  Wendet man für a=5 das Epsilon-Delta Kriterium an, so ist
> es für alle diejenigen x in der Delta Umgebung von a
> erfüllt, für die die Funktion definiert ist.
>  Betrachtet man den Grenzwert, so gilt lim x->a+ f(x) =
> f(a), aber lim x->a- lässt sich weil f(x) undefiniert ist
> garnicht bilden, oder ?
>  Existiert dann der lim x->a f(x) überhaupt ? (Normal doch
> nur, wenn linksseitiger und rechtsseitiger Grenzwert
> übereinstimmen, oder)

  
Manche Lehrbücher reden in solchen Fällen von "halbseitiger Stetigkeit" (in Deinem Fall dann ja rechtsseitiger St.).
Viele aber beziehen halbseitige Stetigkeit einfach in die "Stetigkeit" mit ein und sagen z.B.:
Die Funktion mit dem Funktionsterm f(x) = [mm] x^{2} [/mm] und [mm] D_{f} [/mm] = [-2; 3] ist in ihrer gesamten Definitionsmenge stetig.

mfG!
Zwerglein  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de