www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit Vereinigung Interva
Stetigkeit Vereinigung Interva < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit Vereinigung Interva: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Do 25.11.2010
Autor: Roccoco

Aufgabe
a)Es sei [mm] D\subset \IR [/mm] die Vereinigung zweier offener Intervalle (a,b) und (c,d). Es sei [mm] f:D\to\IR [/mm] eine Funktion. Zeigen Sie, wenn die Einschränkung von f auf (a,b) stetig ist und wenn die Einschränkung von f auf (c,d) stetig ist, dann ist auch f stetig auf ganz D.
b.) Es sei nun D [mm] \subset \IR [/mm] die Vereinigung zweier Intervalle (a,b) und [c,d). Es sei [mm] f:D\to\IR [/mm] eine Funktion, so dass die Einschränkung von f auf (a,b) stetig ist, und so dass die Einschränkung von f auf [c,d) stetig ist. Folgt daraus, dass f notwendigerweise stetig auf ganz D ist?

Hallo!
Also ich versuche gerade diese Aufgabe zu lösen und habe mir folgendes überlegt:
Wenn zum Beispiel [mm] (c,d)\subset [/mm] (a,b) dann ist ja f stetig auf der Vereinigung von (a,b) und (c,d) oder? darf man das so einfach verallgemeinern? wenn die Intervalle disjunkt sind hmm gibts auch kein Problem, da sie offen sind. Ich weiß nicht so recht wie man das mathematisch verpackt...bin noch etwas ungeschickt :-/
bei der Aufgabe b bin ich der Meinung dass die Vereinigung nicht notwendig stetig ist. Ein Gegenbeispiel (ich hoffe ich mach keinen Blödsinn) wäre die Abrundungsfunktion einmal auf dem Intervall (1,2) und einmal auf [2,3) wobei b=c gewählt wird???

Über eine Antwort würde ich mich sehr freuen.

Grüße
Roccoco

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Stetigkeit Vereinigung Interva: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Fr 26.11.2010
Autor: fred97


> a)Es sei [mm]D\subset \IR[/mm] die Vereinigung zweier offener
> Intervalle (a,b) und (c,d). Es sei [mm]f:D\to\IR[/mm] eine Funktion.
> Zeigen Sie, wenn die Einschränkung von f auf (a,b) stetig
> ist und wenn die Einschränkung von f auf (c,d) stetig ist,
> dann ist auch f stetig auf ganz D.
> b.) Es sei nun D [mm]\subset \IR[/mm] die Vereinigung zweier
> Intervalle (a,b) und [c,d). Es sei [mm]f:D\to\IR[/mm] eine Funktion,
> so dass die Einschränkung von f auf (a,b) stetig ist, und
> so dass die Einschränkung von f auf [c,d) stetig ist.
> Folgt daraus, dass f notwendigerweise stetig auf ganz D
> ist?
>  Hallo!
>  Also ich versuche gerade diese Aufgabe zu lösen und habe
> mir folgendes überlegt:
>  Wenn zum Beispiel [mm](c,d)\subset[/mm] (a,b) dann ist ja f stetig
> auf der Vereinigung von (a,b) und (c,d) oder? darf man das
> so einfach verallgemeinern? wenn die Intervalle disjunkt
> sind hmm gibts auch kein Problem, da sie offen sind. Ich
> weiß nicht so recht wie man das mathematisch
> verpackt...bin noch etwas ungeschickt :-/

Sei [mm] x_0 \in (a,b)\cup [/mm] (c,d) und [mm] (x_n) [/mm] eine Folge in  [mm] (a,b)\cup [/mm] (c,d) mit [mm] x_n \to x_0 [/mm]

Zu zeigen ist :  [mm] f(x_n) \to f(x_0): [/mm]

Fall 1: [mm] x_0 \in [/mm] (a,b). Da (a,b) offen ist, gibt es ein [mm] n_0 \in \IN [/mm] mit: [mm] x_n \in [/mm] (a,b) für alle n [mm] \ge n_0. [/mm] Da f in(a,b) stetig ist, folgt : [mm] f(x_n) \to f(x_0) [/mm]

Fall 2:  [mm] x_0 \in [/mm] (c,d). Mach Du mal.

>  bei der Aufgabe b bin ich der Meinung dass die Vereinigung
> nicht notwendig stetig ist. Ein Gegenbeispiel (ich hoffe
> ich mach keinen Blödsinn) wäre die Abrundungsfunktion
> einmal auf dem Intervall (1,2) und einmal auf [2,3) wobei
> b=c gewählt wird???

Schönes Beispiel

FRED

>  
> Über eine Antwort würde ich mich sehr freuen.
>  
> Grüße
>  Roccoco
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
>  


Bezug
                
Bezug
Stetigkeit Vereinigung Interva: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:37 Fr 26.11.2010
Autor: Roccoco

Hallo Fred,

>  
> Sei [mm]x_0 \in (a,b)\cup[/mm] (c,d) und [mm](x_n)[/mm] eine Folge in  
> [mm](a,b)\cup[/mm] (c,d) mit [mm]x_n \to x_0[/mm]
>  
> Zu zeigen ist :  [mm]f(x_n) \to f(x_0):[/mm]
>  
> Fall 1: [mm]x_0 \in[/mm] (a,b). Da (a,b) offen ist, gibt es ein [mm]n_0 \in \IN[/mm]
> mit: [mm]x_n \in[/mm] (a,b) für alle n [mm]\ge n_0.[/mm] Da f in(a,b) stetig
> ist, folgt : [mm]f(x_n) \to f(x_0)[/mm]
>  
> Fall 2:  [mm]x_0 \in[/mm] (c,d). Mach Du mal.

Der 2. Fall folgt ja dann ziemlich analog, weil es ja im Prinzip das gleiche ist, also:
[mm] x_0\in [/mm] (c,d)
da (c,d) offen ist, gibt es ein [mm] n_0\in\IN [/mm] mit: [mm] x_n\in [/mm] (c,d) für alle [mm] n\ge n_0. [/mm] Da f stetig auf (c,d) ist, folgt: [mm] f(x_n)\to f(x_0) [/mm]
Aber wie folgert man jetzt, dass es auch stetig auf der Vereinnigung ist?
Kann man nicht einfach sagen:
[mm] x_0\in (a,b)\cup(c,d) [/mm] die Vereinigung offener mengen ist wieder offen und deswegen gibt es ein [mm] n_0\in \IN [/mm] mit [mm] x_n\in (a,b)\cup(c,d) [/mm] für alle [mm] n\ge n_0 [/mm] ... hier komme ich leider nicht weiter :(
Danke für deine Hilfe!

Grüße
Roccoco



Bezug
                        
Bezug
Stetigkeit Vereinigung Interva: Antwort
Status: (Antwort) fertig Status 
Datum: 10:40 Fr 26.11.2010
Autor: fred97

Wir haben doch gezeigt:

Für jedes $ [mm] x_0 \in (a,b)\cup [/mm]  (c,d)$ und jede Folge $ [mm] (x_n) [/mm] $ in  $ [mm] (a,b)\cup [/mm] (c,d)$ mit $ [mm] x_n \to x_0 [/mm] $ gilt:

$ [mm] f(x_n) \to f(x_0) [/mm] $

Was willst Du mehr ?

FRED

Bezug
                                
Bezug
Stetigkeit Vereinigung Interva: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:51 Fr 26.11.2010
Autor: Roccoco

Oh ja schon fertig ;)

Danke für deine Hilfe Fred.

Beste Grüße
Roccoco

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de