www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit der Umkehrabbildung
Stetigkeit der Umkehrabbildung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit der Umkehrabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 Di 24.06.2008
Autor: janm

Hier liegt keine spezielle Aufgabe zu Grunde.

Gegeben ist eine stetige, injektive Abbildung [mm]f: U \to \IR^m[/mm] mit [mm]U\subset \IR^n[/mm] offen.

Schränkt man den Wertebereich von f auf sein Bild ein ist f bijektiv und besitzt eine Umkehrabbildung.
Ist diese unter gegebenen Voraussetzungen stetig?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stetigkeit der Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Di 24.06.2008
Autor: djmatey

Hallo,

also für n=m=1 stimmt das.
Oder geht es Dir speziell um den mehrdimensionalen Fall?

LG djmatey

Bezug
                
Bezug
Stetigkeit der Umkehrabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 Di 24.06.2008
Autor: janm

Danke, das mit m=n=1 war mir klar, es ging mir speziell um den mehrdimensionalen Fall sorry wenn das aus meiner Frage nicht so hervorging.

Bezug
        
Bezug
Stetigkeit der Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Di 24.06.2008
Autor: fred97

Es gilt Folgendes:

Sind X und Y metrische Räume, D eine kompakte Teilmenge von X und ist
f: D --> Y stetig und injektiv, so ist [mm] f^{-1} [/mm] : f(D) --> D  stetig.

Diesen Satz findet man in den meisten Analysis-Büchern, z. B. in: W.Walter, Analysis II (Sringerverlag).

Ist Dir klar, wie Du diesen Satz auf Deine Situation anwenden kannst ?

FRED

Bezug
                
Bezug
Stetigkeit der Umkehrabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Di 24.06.2008
Autor: janm

Das gilt dann auf jeder kompakten Teilmenge D meiner offenen Menge und da f stetig ist, ist ja f(D) ebenfalls kompakt.
Kann ich daraus dann auf die ganze offene Menge schließen? Es müsste ja dabei rauskommen, dass das Bild von f auch wieder offen ist oder?

Bezug
                        
Bezug
Stetigkeit der Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:18 Mi 25.06.2008
Autor: fred97

Nimm einen Punkt x aus D. Dist offen, also ex. eine kompakte Kreisscheibe K mit Mittelpunkt x, die ganz in D liegt. Nach obigem Satz ist f stetig auf K, also auch im Punkt x. X in D war beliebig, also ist f stetig auf D.

  ?? Wie kommst Du darauf:
"Es müsste ja dabei rauskommen, dass das Bild von f auch wieder offen ist oder? "

Das ist i.a. falsch.

FRED

Bezug
                                
Bezug
Stetigkeit der Umkehrabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Mi 25.06.2008
Autor: janm

Aber wenn f auf einer offenen Menge D umkehrbar ist, im f = V, und g die auf V stetige inverse von f ist dann ist ja V das Urbild von D, D ist offen und g stetig also ist auch V offen ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de