www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit einer Fkt
Stetigkeit einer Fkt < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Mo 27.01.2014
Autor: scout2010_g.p

Aufgabe
Für [mm] $x\in\IR$ [/mm] bezeichnen(x) die Größte ganze Zahl [mm] $n\in\IZ$ [/mm] mit [mm] $n\le [/mm] x$

untersuchen sie für welche x [mm] $\in\IR$ [/mm] die Funktion
[mm] $f(n):\IR\to\IR$, [/mm] $f(n)=x-[x]$
stetig ist. Skizieren sie den Graphen von f.


Hallo Leute

Ich weiß leider nicht so recht wie ich stetigkeit für eine ganze Funktion zeigen soll, zumal die Funktion so wie ich mir das überlegt habe  immer direkt hinterjedem  [mm] $x\in\IZ$ [/mm] eine sprung stelle hat.



        
Bezug
Stetigkeit einer Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Mo 27.01.2014
Autor: abakus


> Für [mm]x\in\IR[/mm] bezeichnen(x) die Größte ganze Zahl [mm]n\in\IZ[/mm]
> mit [mm]n\le x[/mm]

>

> untersuchen sie für welche x [mm]\in\IR[/mm] die Funktion
> [mm]f(n):\IR\to\IR[/mm], [mm]f(n)=x-[x][/mm]
> stetig ist. Skizieren sie den Graphen von f.
> Hallo Leute

>

> Ich weiß leider nicht so recht wie ich stetigkeit für
> eine ganze Funktion zeigen soll, zumal die Funktion so wie
> ich mir das überlegt habe immer direkt hinterjedem
> [mm]x\in\IZ[/mm] eine sprung stelle hat.

Also solltest du diese Sprungstellen aus dem Defininionsbereich ausschließen.
In den Intervallen zwischen den Sprungstellen ist doch die Fkt. jeweils stetig.
Gruß Abakus
>
>

Bezug
                
Bezug
Stetigkeit einer Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Mo 27.01.2014
Autor: scout2010_g.p

Ja das habe ich mir schon gedacht, trotzdem weiß ich jetzt immer noch nicht wie ich Beweise das die Funktion auf [mm] $\IR$\$\IZ$ [/mm] stetig ist. Ich weiß schon das Stetigkeit in einem Punkt x so definiert ist das gilt:
[mm] $\limes_{x \to a}f(x)=f(a)$ [/mm]
Aber damit weiß ich doch jeweils nur etwas über einen Punkt?

Bezug
                        
Bezug
Stetigkeit einer Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Mo 27.01.2014
Autor: reverend

Hallo scout,

> Ja das habe ich mir schon gedacht, trotzdem weiß ich jetzt
> immer noch nicht wie ich Beweise das die Funktion auf
> [mm]\IR[/mm]\[mm]\IZ[/mm] stetig ist. Ich weiß schon das Stetigkeit in einem
> Punkt x so definiert ist das gilt:
>  [mm]\limes_{x \to a}f(x)=f(a)[/mm]

Das ist die Definition von Stetigkeit in $a$.

>  Aber damit weiß ich doch
> jeweils nur etwas über einen Punkt?

Stimmt. Aber wenn Du vorher nichts Genaueres über $a$ weißt, außer dass [mm] a\not\in\IZ, [/mm] dann kannst Du es doch allgemein lösen.

Übrigens wird die betrachtete Funktion in D meist "untere Gaußklammer" genannt, im Englischen "floor function". In [mm] $\LaTeX$ [/mm] gibts dafür die Zeichen \lfloor und \rfloor, die sich aber ohne Trick nicht der Höhe des Arguments anpassen:

 \lfloor\sqrt{2}\rfloor  ergibt [mm] \lfloor\sqrt{2}\rfloor. [/mm]

 \left\lfloor\sqrt{\frac{a^{-m}}{\frac{2}{c_3}}}\right\rfloor  ergibt [mm] \left\lfloor\sqrt{\frac{a^{-m}}{\frac{2}{c_3}}}\right\rfloor. [/mm]

Grüße
reverend


Bezug
        
Bezug
Stetigkeit einer Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Mo 27.01.2014
Autor: DieAcht

Hallo,


Du kannst dir auch überlegen, dass du diese Funktion auch nicht stetig fortsetzen kannst, denn dafür ist kein "Platz".

Zeichne dir die Funktion auf.
Halte fest was passiert, wenn [mm] x\in\IZ [/mm] bzw. [mm] x\in\IR\setminus\IZ, [/mm] ist.

Dann wirst du sicher weiterkommen.


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de