www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Stetigkeit einer Funktion
Stetigkeit einer Funktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:01 Do 11.01.2007
Autor: Thomas85

Hallo!
Ich muss die Stetigkeit folgender Funktion auf |R untersuchen:

f(x) = [x] + [mm] \wurzel[n]{x-[x]} [/mm] , n >= 2 zeigen.

also ich stell mir die funktion so vor dass der linke teil immer um 1 steigt und der rechte teil immer von [mm] \wurzel[n]{0} [/mm] bis [mm] \wurzel[n]{1} [/mm] geht. damit wär f(x) dann gefühlsmäßig auf ganz |R stetig.

aber ich muss das ja beweisen ^^ und weiß nicht so recht wie ich zum ziel komme:
zuerst hab ich mir überlegt dass ich f(x) in g(x)=[x] und h(x)= [mm] \wurzel[n]{x-[x]} [/mm] spalten könnte und jeweils die stetigkeit zeigen könnte, dann wäre (g+h)(x) auch wieder stetig. aber g(x) ist ja nur stetig auf den jeweiligen Intervallen [0,1), [1,2),......
Dann habe ich versucht irgendwie das [mm] \delta \epsilon [/mm] kriterium anzuweden, finde aber keinen Weg [mm] \delta [/mm] zu wählen.
Mit dem Folgenkriterium komme ich auch nicht weiter.
eine Idee hätte ich noch zu zeigen dass f(x)  eigtl dieselbe Form haben  müsste wie die Funktion [mm] \wurzel[n]{x} [/mm] . Für diese Funktion haben wir in der Vorlesung gezeigt bekommen dass sie auf [mm] [0,\infty)stetiug [/mm] ist.


Es ist für mich aber auch die erste Funktion deren Stetigkeit ich zeigen muss, bin also noch nicht so erfahren.

Würde mich daher sehr freuen wenn mir jemand einen Tipp dazu geben könnte und wenn es generell tipps zur Herangehensweise an Aufgaben dieser Art gibt, würde mir das auch sehr helfen.

Mfg
Thomas

        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Do 11.01.2007
Autor: Leopold_Gast

Es gilt für alle reellen [mm]x \geq 0[/mm]:

[mm][x+1] = [x] + 1[/mm]

Denn ob man eine reelle Zahl um 1 erhöht und dann ihren Kommateil wegstreicht oder ob man zuerst ihren Kommateil wegstreicht und dann um 1 erhöht, bleibt sich gleich.

Nutze diese Beziehung aus, um für deine Funktion die Funktionalgleichung

[mm]f(x+1) = 1 + f(x) \, , \ \ x \geq 0[/mm]

nachzuweisen. Die Stetigkeit im offenen Intervall [mm](0,1)[/mm] ist ja klar. Jetzt mußt du nur noch die Stetigkeit bei 0 und 1 nachweisen. Da kannst du teilweise schon die Funktionalgleichung verwenden. Du kannst es aber auch direkt mit der Funktionsgleichung tun. Berechne jeweils die Grenzwerte von links und von rechts getrennt.

Schließlich erlaubt es die Funktionalgleichung, die Stetigkeit von Intervall zu Intervall sukzessive nachzuweisen. Formal müßte man wohl einen Induktionsbeweis führen.

Bezug
                
Bezug
Stetigkeit einer Funktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:54 Do 11.01.2007
Autor: Thomas85

Hallo und vielen Dank für die Antwort.
Die Stetigkeit in (0,1) ist zwar irgendwie klar, aber das muss man doch trotzdem noch nachweisen oder nicht? welches Kriterium bietet sich dafür an?

und ist der beweis für die eckpunkte so richtig?:

f(x) ist in [mm] x_0 [/mm] = 0 stetig wenn für alle [mm] (x_n) [/mm] mit lim [mm] x_n [/mm] = 0 gilt: [mm] lim(f(x_n))=f(x_0). [/mm]
Sei [mm] (x_n) [/mm] eine beliebgige Folge mit [mm] lim(x_n)=0 [/mm] dann gilt lim [mm] f(x_0) [/mm] = f(0) = 0
Damit ist f(x) in [mm] x_0=0 [/mm] stetig.
und für den eckpunkt 1:

Sei [mm] (x_n) [/mm] eine beliebige Folge mit [mm] lim(x_n)=x_0=1 [/mm] dann gilt lim [mm] f(x_n)=f(1)=1. [/mm] Damit ist f(x) stetig in [mm] x_0=1. [/mm]

Ich muss aber sagen dass mit das Folgenkriterium no´ch nicht wirklich einleuchtet. Ist lim [mm] f((x_n)) [/mm] mit lim [mm] x_n [/mm] --> [mm] x_0 [/mm] nicht immer [mm] f(x_0) [/mm] ?
mfg thomas

Bezug
                        
Bezug
Stetigkeit einer Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 13.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de