www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit für Parameter a,b
Stetigkeit für Parameter a,b < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit für Parameter a,b: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 So 13.01.2013
Autor: Zero_112

Aufgabe
Für [mm] a,b\in\IR, [/mm] sei die Funktion [mm] C_{a,b}: \IR \to \IR [/mm] gegeben durch, für alle [mm] x\in\IR, C_{a,b}:= \begin{cases} \bruch{a}{x-2}, & \mbox{für } x\le 0 \\ 2x-b, & \mbox{für }0 \le x < 2 \\ 6, \mbox{für } x \ge 2 \end{cases} [/mm]

Für welche Werte a,b ist [mm] C_{a,b} [/mm] auf ganz [mm] \IR [/mm] stetig?


Ich habe um ehrlich zu sein keine Ahnung wie ich das angehen soll. Ich würde einfach zeigen dass die drei Funktionen in der geschweiften Klammer in den Intervallen stetig sind, nur ich wüsste nicht welche a,b ich da setzen soll, damit das dann stetig ist. Ich bräuchte vllt nen Ansatz.

        
Bezug
Stetigkeit für Parameter a,b: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 So 13.01.2013
Autor: Diophant

Hallo,

> Für [mm]a,b\in\IR,[/mm] sei die Funktion [mm]C_{a,b}: \IR \to \IR[/mm]
> gegeben durch, für alle [mm]x\in\IR, C_{a,b}:= \begin{cases} \bruch{a}{x-2}, & \mbox{für } x\le 0 \\ 2x-b, & \mbox{für }0 \le x \le 2 \\ 6, \mbox{für } x \ge 2 \end{cases}[/mm]
>
> Für welche Werte a,b ist [mm]C_{a,b}[/mm] auf ganz [mm]\IR[/mm] stetig?
> Ich habe um ehrlich zu sein keine Ahnung wie ich das
> angehen soll. Ich würde einfach zeigen dass die drei
> Funktionen in der geschweiften Klammer in den Intervallen
> stetig sind, nur ich wüsste nicht welche a,b ich da setzen
> soll, damit das dann stetig ist. Ich bräuchte vllt nen
> Ansatz.


innerhalb der Intervalle musst du nichts tun. Die Terme sind entweder erkennbar stetig oder aus stetigen Funktionen zusammengesetzt.

Was du untersuchen musst, sind die Grenzen zwischen den Intervallen, also die Stellen [mm] x_1=0 [/mm] und [mm] x_2=2. [/mm] Hier offenbart sich zunächst einmal ein Fehler in der Aufgabenstellung, so wie du sie eingetippt hast. Da müsste jeweils von einer Seite her die strikte Ordnungsrelation bei der Angabe der Intervalle stehen. Sonst hätte die Funktion an einer Stelle zwei unterschiedliche Definitionen, und das kann schon per definitionem nicht sein.

Was eigentlich zu zeigen ist, ist dann schnell erklärt: für die fraglichen Stellen ist jeweils einer der Terme zuständig. Mit ihm berechnest du den Funktionswert. Nun muss gezeigt werden, dass der Term, der für das angrenzende Intervall zuständig ist, beim Übergang von x auf die Grenzstelle den betreffenden Funktionswert als Grenzwert besitzt. Bzw. in dieser Aufgabe müssen eben die Parameter so gewählt werden, dass dies der Fall ist.


Gruß, Diophant

Bezug
                
Bezug
Stetigkeit für Parameter a,b: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 So 13.01.2013
Autor: Zero_112

Also so?:

[mm] C_{a,b}(0) [/mm] = [mm] -\bruch{a}{2} [/mm]

Lasse ich nun 2x-b gegen die Grenzstelle, also x=0 gehen, dann passiert folgendes:  [mm] \limes_{x\rightarrow\ 0} [/mm] 2x-b = -b ...Also ist b = a/2

[mm] C_{a,b}(2) [/mm] = 4-b

Grenzwert von 6 (gegen x=2) ist 6 ...also muss b=-2 gelten , da 4-(-2) =6

Demnach ist a = -4



Bezug
                        
Bezug
Stetigkeit für Parameter a,b: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 So 13.01.2013
Autor: leduart

hallo
richtig
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de