www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit im Nullpunkt
Stetigkeit im Nullpunkt < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit im Nullpunkt: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:32 Mo 01.09.2014
Autor: Chaoticus

Aufgabe
Zeigen Sie, dass die Funktion [mm] f:\IR^2\to\IR [/mm] mit [mm] f(x,y)=\bruch{x^3}{x^2+y^2} [/mm] genau dann, wenn [mm] (x,y)\not=(0,0) [/mm] ist, und f(x,y)=0 genau dann, wenn (x,y)=(0,0) ist, im Nullpunkt stetig ist, aber im Nullpunkt nicht vollständig differenzierbar.

Mir geht es in erster Linie bei dieser Aufgabe um den Beweis der Stetigkeit im Nullpunkt. Ich habe gedacht, dass es reicht zu zeigen, dass der Grenzwert [mm] \limes_{(x,y)\rightarrow(0,0)}f(x,y) [/mm] existiert und dass dieser eben gleich dem Funktionswert f(0,0)=0 ist.
Dass der oben genannte Grenzwert existiert, wollte ich mittels [mm] \limes_{x\rightarrow0}(\limes_{y\rightarrow0}f(x,y))=\limes_{x\rightarrow0}x=0 [/mm] und [mm] \limes_{y\rightarrow0}(\limes_{x\rightarrow0}f(x,y))=\limes_{y\rightarrow0}0=0 [/mm] nachweisen.
Die Aufgabe habe ich so eingereicht und ohne Kommentar lediglich mit einem großen roten F und 0 Punkten wiederbekommen. Daher lautet meine Frage nun, wie ich diese Aufgabe zu bearbeiten habe und was an meinen Ausführungen denn genau falsch ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stetigkeit im Nullpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Mo 01.09.2014
Autor: schachuzipus

Hallo,

> Zeigen Sie, dass die Funktion [mm]f:\IR^2\to\IR[/mm] mit
> [mm]f(x,y)=\bruch{x^3}{x^2+y^2}[/mm] genau dann, wenn
> [mm](x,y)\not=(0,0)[/mm] ist, und f(x,y)=0 genau dann, wenn
> (x,y)=(0,0) ist, im Nullpunkt stetig ist, aber im Nullpunkt
> nicht vollständig differenzierbar.
> Mir geht es in erster Linie bei dieser Aufgabe um den
> Beweis der Stetigkeit im Nullpunkt. Ich habe gedacht, dass
> es reicht zu zeigen, dass der Grenzwert
> [mm]\limes_{(x,y)\rightarrow(0,0)}f(x,y)[/mm] existiert und dass
> dieser eben gleich dem Funktionswert f(0,0)=0 ist.

Jo

> Dass der oben genannte Grenzwert existiert, wollte ich
> mittels
> [mm]\limes_{x\rightarrow0}(\limes_{y\rightarrow0}f(x,y))=\limes_{x\rightarrow0}x=0[/mm]
> und
> [mm]\limes_{y\rightarrow0}(\limes_{x\rightarrow0}f(x,y))=\limes_{y\rightarrow0}0=0[/mm]
> nachweisen.
> Die Aufgabe habe ich so eingereicht und ohne Kommentar
> lediglich mit einem großen roten F und 0 Punkten
> wiederbekommen. Daher lautet meine Frage nun, wie ich diese
> Aufgabe zu bearbeiten habe

Gehe mal zu Polarkoordinaten über ...

Dann ist es ganz einfach!

Oder gehe über die Definition mit [mm]\varepsilon, \delta[/mm] und schaue dir mal [mm]\left|\frac{x^3}{x^2+y^2}\right|[/mm] an.

Es ist [mm]y^2>0[/mm], fällt dir da eine Abschätzung ein ?


> und was an meinen Ausführungen
> denn genau falsch ist.

Du musst dich auf jedem erdenklichen Weg der Stelle [mm](0,0)[/mm] nähern ...

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus

Bezug
                
Bezug
Stetigkeit im Nullpunkt: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:25 Mo 01.09.2014
Autor: Chaoticus

Vielen Dank für die schnelle Antwort - ich entscheide mich für die Polarkoordinaten, da mir die mehr zusagen, als Abschätzungen.

Wenn ich zu Polarkoordinaten übergehe, dann erhalte ich [mm] \limes_{(x,y)\rightarrow(0,0)}f(x,y)=\limes_{r\rightarrow0}f(r*cos\phi,r*sin\phi)=\limes_{r\rightarrow0}r*cos^3\phi=0, [/mm] wenn ich mich des Additionstheorems bediene.
Ist damit jetzt schon die Stetigkeit im Nullpunkt gesichert oder muss ich noch etwas anderes zeigen?

Bezug
                        
Bezug
Stetigkeit im Nullpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Mo 01.09.2014
Autor: schachuzipus

Hallo nochmal,

> Vielen Dank für die schnelle Antwort - ich entscheide mich
> für die Polarkoordinaten, da mir die mehr zusagen, als
> Abschätzungen.

>

> Wenn ich zu Polarkoordinaten übergehe, dann erhalte ich
> [mm]\limes_{(x,y)\rightarrow(0,0)}f(x,y)=\limes_{r\rightarrow0}f(r*cos\phi,r*sin\phi)=\limes_{r\rightarrow0}r*cos^3\phi=0,[/mm]
> wenn ich mich des Additionstheorems bediene.

Jo, stimmt!

Und zwar unabhängig vom Winkel [mm] $\phi$ [/mm]

> Ist damit jetzt schon die Stetigkeit im Nullpunkt gesichert
> oder muss ich noch etwas anderes zeigen?

Ja!

Gruß

schachuzipus

Bezug
                                
Bezug
Stetigkeit im Nullpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:51 Mo 01.09.2014
Autor: Chaoticus

Achso, jetzt verstehe ich das endlich mal: Weil der Grenzwert unabhängig von [mm] \phi [/mm] null ist, betrachte ich damit auch jede erdenkliche Richtung, mit der ich mich dem Nullpunkt nähere.
Vielen Dank! Jetzt ergibt das für mich auch endlich einen Sinn :)

Ein weiterer Aufgabenteil ist ja, dass ich zeigen soll, dass es nicht vollständig differenzierbar ist. Betrachte ich wieder Polarkoordinaten, dann erhalte ich, wenn ich das Differential betrachte, [mm] \limes_{(x,y)\rightarrow(0,0)}\bruch{f(x,y)-f(0,0)-f_x(0,0)*x-f_y(0,0)*y}{\wurzel{x^2+y^2}}=\limes_{r\rightarrow0}cos^3\phi-cos\phi. [/mm] Damit ist dieser Grenzwert ja nun sehr wohl von [mm] \phi [/mm] abhängig. Kann ich daraus schon schließen, dass die gegebene Funktion nicht vollständig differenzierbar ist?

Bezug
                        
Bezug
Stetigkeit im Nullpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:52 Mo 01.09.2014
Autor: schachuzipus

Hallo nochmal,

vllt. ein Wort zu der Abschätzung, die ich im Sinn hatte ...

[mm]\left|\frac{x^3}{x^2+y^2}\right|=\frac{|x|^3}{x^2+y^2}[/mm]

Nun ist [mm]y^2>0[/mm], also [mm]x^2+y^2>x^2[/mm], mithin [mm]\frac{1}{x^2+y^2}<\frac{1}{x^2}[/mm]

Also

[mm]\frac{|x|^3}{x^2+y^2} \ < \ \frac{|x|^3}{x^2} \ = \ |x|[/mm]

Und was treibt das für [mm]x\to 0[/mm] ?

Geht offensichtlich gegen 0, man kriegt es also kleiner als jedes [mm]\varepsilon[/mm]

Du kannst ja zur Übung mal ein passendes [mm]\delta[/mm] konstruieren zu beliebig, aber fest vorgelegtem [mm]\varepsilon[/mm] ...

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de